【題目】如圖,直線y=kx+b與雙曲線(x﹤0)相交于A(-4,a)、B(-1,4)兩點(diǎn).

(1)求直線和雙曲線的解析式;

(2)在y軸上存在一點(diǎn)P,使得PA+PB的值最小,求點(diǎn)P的坐標(biāo).

【答案】(1)直線的解析式為y=x+5,雙曲線的解析式為

(2)點(diǎn)P的坐標(biāo)為.

【解析】根據(jù)一次函數(shù)和反比例函數(shù)的解析式求出點(diǎn)A、B的坐標(biāo),然后作出點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn)C,連接BC,與y軸的交點(diǎn)即為點(diǎn)P,然后求出直線BC的解析式,求出點(diǎn)P的坐標(biāo).

(1)y=x+5,

(2)作點(diǎn)B關(guān)于y軸的對(duì)稱點(diǎn)C(1,4),連接AC交y軸于點(diǎn)P.

易求得,令x=0,得,∴P.

“點(diǎn)睛”本題考查了反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題,涉及了待定系數(shù)法求函數(shù)解析式、軸對(duì)稱、最短路線問(wèn)題,解答本題的關(guān)鍵是把兩個(gè)函數(shù)關(guān)系式聯(lián)立成方程組求出交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(10分)某體育用品專賣(mài)店銷(xiāo)售7個(gè)籃球和9個(gè)排球的總利潤(rùn)為355元,銷(xiāo)售10個(gè)籃球和20個(gè)排球的總利潤(rùn)為650元.

(1)求每個(gè)籃球和每個(gè)排球的銷(xiāo)售利潤(rùn);

(2)已知每個(gè)籃球的進(jìn)價(jià)為200元,每個(gè)排球的進(jìn)價(jià)為160元,若該專賣(mài)店計(jì)劃用不超過(guò)17400元購(gòu)進(jìn)籃球和排球共100個(gè),且要求籃球數(shù)量不少于排球數(shù)量的一半,請(qǐng)你為專賣(mài)店設(shè)計(jì)符合要求的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下利事件中,是隨機(jī)事件的是(

A.通常溫度降到0℃以下,純凈的水結(jié)冰

B.明天太陽(yáng)從東邊升起

C.購(gòu)買(mǎi)一張彩票,中獎(jiǎng)

D.任意畫(huà)一個(gè)三角形,其內(nèi)角和為360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,M、N分別為BC、CD的中點(diǎn),AM=1,AN=2,∠MAN=60°則AB的長(zhǎng)為____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若△ABC∽△DEF,相似比為43,則△ABC與△DEF對(duì)應(yīng)的中線之比為( 。

A.43B.34C.169D.916

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營(yíng)養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對(duì)不同口味牛奶的喜好,對(duì)全校訂購(gòu)牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:

(1)本次被調(diào)查的學(xué)生有   名;

(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);

(3)該校共有1200名學(xué)生訂購(gòu)了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購(gòu)牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=6,AC=10,點(diǎn)D , E , F分別是AB , BC , AC的中點(diǎn),則四邊形ADEF的周長(zhǎng)為( ).

A.16
B.12
C.10
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出如下問(wèn)題:
已知:如圖,四邊形ABCD是平行四邊形
求作:菱形AECF,使E,F(xiàn)分別在BC,AAD上

小凱的作法如下:
⑴連接AC
⑵作AC的垂直平分線EF分別交BC,AD于E,F(xiàn)
⑶連接AE,CF

所以四邊形AECF是菱形
老師說(shuō):“小凱的作法正確.”
請(qǐng)回答:在小凱的作法中,判定四邊形AECF是菱形的依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同一平面內(nèi)的兩條線段,下列說(shuō)法正確的是(  )

A. 一定平行

B. 一定相交

C. 可以既不平行又不相交

D. 不平行就相交

查看答案和解析>>

同步練習(xí)冊(cè)答案