【題目】如圖,在平面直角坐標系中,Rt△ABC的斜邊AB在y軸上,邊AC與x軸交于點D,AE平分∠BAC交邊BC于點E,經(jīng)過點A、D、E的圓的圓心F恰好在y軸上,⊙F與y軸相交于另一點G.
(1)求證:BC是⊙F的切線;
(2)若點A、D的坐標分別為A(0,﹣1),D(2,0),求⊙F的半徑;
(3)試探究線段AG、AD、CD三者之間滿足的等量關系,并證明你的結論.

【答案】
(1)證明:連接EF,

∵AE平分∠BAC,

∴∠FAE=∠CAE,

∵FA=FE,

∴∠FAE=∠FEA,

∴∠FEA=∠EAC,

∴FE∥AC,

∴∠FEB=∠C=90°,即BC是⊙F的切線


(2)解:連接FD,

設⊙F的半徑為r,

則r2=(r﹣1)2+22,

解得,r= ,即⊙F的半徑為


(3)解:AG=AD+2CD.

證明:作FR⊥AD于R,

則∠FRC=90°,又∠FEC=∠C=90°,

∴四邊形RCEF是矩形,

∴EF=RC=RD+CD,

∵FR⊥AD,

∴AR=RD,

∴EF=RD+CD= AD+CD,

∴AG=2FE=AD+2CD


【解析】(1)連接EF,根據(jù)角平分線的定義、等腰三角形的性質得到∠FEA=∠EAC,得到FE∥AC,根據(jù)平行線的性質得到∠FEB=∠C=90°,證明結論;(2)連接FD,設⊙F的半徑為r,根據(jù)勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四邊形RCEF是矩形,得到EF=RC=RD+CD,根據(jù)垂徑定理解答即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某村為了盡早擺脫貧窮落后的現(xiàn)狀,積極響應國家號召,15位村民集資8萬元,承包了一些土地種植有機蔬菜和水果,種這兩種作物每公頃需要人數(shù)和投入資金如下表:

作物種類

每公頃所需人數(shù)/

每公頃投入資金/萬元

蔬菜

4

2

水果

5

3

在現(xiàn)有條件下,這15位村民應承包多少公頃土地,怎樣安排能使每人都有事可做,并且資金正好夠用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程組(或不等式):

1

2

3

4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形ABCD的面積為300cm2,長和寬的比為3:2.在此長方形內(nèi)沿著邊的方向能否并排裁出兩個面積均為147cm2的圓(π取3),請通過計算說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,分別為邊的中點,是對角線,過點的延長線于點

1)求證:;

2)若,求證:四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CD平分∠ACB,∠1=2

1)求證:DEAC

2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線PT與⊙O相切于點T,直線PO與⊙O相交于A,B兩點.
(1)求證:PT2=PAPB;
(2)若PT=TB= ,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙O交AB于點D,E為BC的中點,連接DE并延長交AC的延長線于點F.
(1)求證:DE是⊙O的切線;
(2)若CF=2,DF=4,求⊙O直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,⊙A的圓心A的坐標為(﹣1,0),半徑為1,點P為直線y=﹣ x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是

查看答案和解析>>

同步練習冊答案