【題目】如圖,在平面直角坐標(biāo)系xOy中,平行四邊形OABC的頂點(diǎn)A,B的坐標(biāo)分別為(6,0),(7,3),將平行四邊形OABC繞點(diǎn)O逆時(shí)針方向旋轉(zhuǎn)得到平行四邊形OA′B′C′,當(dāng)點(diǎn)C′落在BC的延長線上時(shí),線段OA′交BC于點(diǎn)E,則線段C′E的長度為 .
【答案】5
【解析】解:∵OC=OC′,CC′⊥y軸,A,B的坐標(biāo)分別為(6,0),(7,3),
∴點(diǎn)C到y(tǒng)軸的距離:7﹣6=1.
∴O′C=O′C′=1,O點(diǎn)到CC′的距離是3,
∴OC=OC′= ,S△OCC′= ×2×3=3.
如圖,過點(diǎn)C作CD⊥OC′于點(diǎn)D,則 OC′CD=3,
∴CD= ,sin∠COC′= = ,tan∠COC′= .
∵∠COC′+∠COE=∠AOE+∠COE,
∴∠COC′=∠AOE,
∴tan∠AOE=tan∠COC′= .
如圖,過E作x軸的垂線,交x軸于點(diǎn)F,
則EF=OO'=3.
∵tan∠AOE= ,
∴OF= =4,
∵OF=O′E=4,
∴C′E=O′E+O′C′=4+1=5.
故答案為:5.
過點(diǎn)C作CD⊥OC′于點(diǎn)D.利用旋轉(zhuǎn)的性質(zhì)和面積法求得CD的長,然后通過解直角三角形推知:tan∠COC′= .結(jié)合圖形和旋轉(zhuǎn)的性質(zhì)得到∠COC′=∠AOE,自點(diǎn)E向x軸引垂線,交x軸于點(diǎn)F,則EF=3.利用等角的正切值相等tan∠AOE=tan∠COC′= = ,進(jìn)而求得OF的長度,則C′E=O′E+O′C=4+1=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:四邊形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120°,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn)(與C、D不重合),將△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)120°后,得到△ABE',連接EE'.
(1)如圖1,∠AEE'= °;
(2)如圖2,如果將直線AE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°后交直線BC于點(diǎn)F,過點(diǎn)E作EM∥AD交直線AF于點(diǎn)M,寫出線段DE、BF、ME之間的數(shù)量關(guān)系;
(3)如圖3,在(2)的條件下,如果CE=2,AE=,求ME的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個(gè)條件中選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論所組成的命題中,正確命題的個(gè)數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E為CD上一點(diǎn),F(xiàn)為BC邊延長線上一點(diǎn),且CE=CF.BE與DF之間有怎樣的關(guān)系?請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖a是一個(gè)長為2m,寬為2n的長方形,沿圖a中虛線用剪刀把它均分成四塊小長方形,然后按圖b的形狀拼成一個(gè)正方形.
(1)請用兩種不同的方法求圖b中陰影部分的面積:
方法1: ____ (只列式,不化簡)
方法2: ______ (只列式,不化簡)
(2)觀察圖b,寫出代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系: ______ ;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,
則(a-b)2= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON=30°,點(diǎn)A1,A2,A3,…在射線ON上,點(diǎn)B1,B2,B3,…在射線OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均為等邊三角形,若OA2=4,則△AnBnAn+1的邊長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小河邊有兩個(gè)村莊A、B,要在河邊建一自來水廠向A村與B村供水。
(1)若要使水廠到A、B村的距離相等,則應(yīng)選擇在哪建廠?
(2)若要使水廠到A、B村的水管最省料,應(yīng)建在什么地方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動(dòng),到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動(dòng);動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動(dòng).設(shè)它們同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng).
(1)AC= cm,BC= cm;
(2)當(dāng)t為何值時(shí),AP=PQ;
(3)當(dāng)t為何值時(shí),P與Q第一次相遇;
(4)當(dāng)t為何值時(shí),PQ=1cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,CF⊥AB于F,BE⊥AC于E,CF與BE交于點(diǎn)D.有下列結(jié)論:
①△ABE≌△ACF;②△BDF≌△CDE;③點(diǎn)D在∠BAC的平分線上;④CF是AB的垂直平分線.以上結(jié)論正確的有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com