按如圖5的規(guī)律擺放三角形,則第4堆三角形的個數(shù)為___________;第n堆三角形的個數(shù)為__________。

 

3n+2

解析:∵n=1時,有5個,即3×1+2個;n=2時,有8個,即3×2+2個;n=3時,有11個,即3×3+2個;n=4時,有12+2=14個;…;∴n=n時,有3n+2個.

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•濟寧)問題情境:
用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?

建立模型:
有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.
解決問題:
根據(jù)以上步驟,請你解答“問題情境”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用棱長為1cm的若干小正方體按如圖所示的規(guī)律在地面上搭建若個幾何體.圖中每個幾何體自上而下分別叫第一層,第二層…第n層(n為正整數(shù)),其中第一層擺放一個,第二層擺放4個,第三層擺放9個…,依次按規(guī)律擺放.(圖片所示為第三個幾何體)
(1)求搭建第4個幾何體的小立方體的個數(shù),第n個幾何體第n層的個數(shù)及總數(shù).
(2)畫出第2,第3個幾何體的三視圖,并求出這兩個幾何體的所有露出部分(不含底面)的面積之和.
(3)為了美觀,若將幾何體的露出部分都涂上油漆(不含底面),已知噴涂1cm2需要油漆0.1g,求噴涂第n個幾何體,共需要多少g油漆?(用含n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用同樣大小的黑色棋子按如圖所示的規(guī)律擺放:
精英家教網(wǎng)
第一個圖中有6枚棋子,第二個圖中有9枚棋子,第三個圖中有12枚棋子,第四個圖有15中枚棋子,…若第n個圖中有2013枚棋子,則n的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源:山東省中考真題 題型:解答題

問題情境:用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?建立模型:有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.解決問題:根據(jù)以上步驟,請你解答”.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(山東濟寧卷)數(shù)學(帶解析) 題型:解答題

問題情境:
用同樣大小的黑色棋子按如圖所示的規(guī)律擺放,則第2012個圖共有多少枚棋子?

建立模型:
有些規(guī)律問題可以借助函數(shù)思想來探討,具體步驟:第一步,確定變量;第二步:在直角坐標系中畫出函數(shù)圖象;第三步:根據(jù)函數(shù)圖象猜想并求出函數(shù)關(guān)系式;第四步:把另外的某一點代入驗證,若成立,則用這個關(guān)系式去求解.
解決問題:
根據(jù)以上步驟,請你解答“問題情境”.

查看答案和解析>>

同步練習冊答案