【題目】已知三角形的三邊分別為6cm8cm10cm,則這個三角形內切圓的半徑是________

【答案】2cm

【解析】

先根據(jù)勾股定理的逆定理判斷出△ABC的形狀,設△ABC內切圓的半徑為R,切點分別為D、E、F,再根據(jù)題意畫出圖形,先根據(jù)正方形的判定定理判斷出四邊形ODCE是正方形,再根據(jù)切線長定理即可得到關于R的一元一次方程,求出R的值即可.

如圖所示:

ABC中,AC=6cmBC=8cm,AB=10cm,

62+82=102,即AC2+BC2=AB2,

∴△ABC是直角三角形,

設△ABC內切圓的半徑為R,切點分別為D、EF,

CD=CE,BE=BF,AF=AD,

ODACOEBC,

∴四邊形ODCE是正方形,即CD=CE=R

AC-CD=AB-BF,即6-R=10-BF

BC-CE=AB-AF,即8-R=BF②,

①②聯(lián)立得,R=2cm

故答案為:2cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點,AE=ED,DF=DC,連結EF并延長交BC的延長線于點G,連結BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長為4,求BG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長線于E,且EDB=C.

(1)求證:ADEDBE;

(2)若DE=9cm,AE=12cm,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣2x經過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù)yk≠0)的圖象上.

1)求反比例函數(shù)的解析式;

2)直接寫出當y4x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,一次函數(shù)y=﹣x+b的圖象與反比例函數(shù)yk0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).

1)求一次函數(shù)和反比例函數(shù)解析式.

2)若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.

3)根據(jù)圖象,直接寫出不等式﹣x+b的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條自南向北的大道上有O、A兩個景點,O、A相距20km,在O處測得另一景點C位于點O的北偏東37°方向,在A處測得景點C位于點A的南偏東76°方向,且A、C相距13km .

(1)求:①A到OC之間的距離;

②O、C兩景點之間的距離;

(2)若在O處測得景點B 位于景點O的正東方向10km,求B、C兩景點之間的距離.(參考數(shù)據(jù):tan37°=0.75

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的切線,切點為A,BC交⊙O于點D,點EAC的中點.

(1)試判斷直線DE與⊙O的位置關系,并說明理由;

(2)若⊙O的半徑為2,B=50°,AC=4.8,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的弦,C為弦AB上一點,設AC=mBC=nmn),將弦AB繞圓心O旋轉一周,若線段BC掃過的面積為(m2n2)π,則=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某區(qū)舉行慶祝改革開放40周年征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統(tǒng)計了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計圖表:

請根據(jù)以上信息,解決下列問題:

(1)征文比賽成績頻數(shù)分布表中c的值是________;

(2)補全征文比賽成績頻數(shù)分布直方圖;

(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數(shù).

查看答案和解析>>

同步練習冊答案