已知點(diǎn)P(5,25)在拋物線y=ax2上,則當(dāng)x=1時(shí),y的值為_(kāi)_______.

答案:1
提示:

提示:由已知得25=a×52,故a=1.∴y=x2.當(dāng)x=1時(shí),y=12=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•賀州)如圖,小明在樓上點(diǎn)A處測(cè)量大樹(shù)的高,在A處測(cè)得大樹(shù)頂部B的仰角為25°,測(cè)得大樹(shù)底部C的俯角為45°.已知點(diǎn)A距地面的高度AD為12m,求大樹(shù)的高度BC.(最后結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A和C的坐標(biāo)分別為(8,0)和(5,4),過(guò)點(diǎn)C作CB⊥y軸于點(diǎn)B,點(diǎn)D從B出發(fā),以每秒1個(gè)單位的速度延BO向終點(diǎn)O運(yùn)動(dòng),點(diǎn)P從C出發(fā),以每秒a(0<a≤1.25)個(gè)單位的速度延CB向終點(diǎn)B運(yùn)動(dòng)(當(dāng)D點(diǎn)到達(dá)O點(diǎn),P點(diǎn)也隨之停止).過(guò)D作DE∥AC交OA于點(diǎn)E,過(guò)P作PQ∥AC交OA于點(diǎn),連接PD,再過(guò)E作EF∥PD交PQ于F.設(shè)P、D兩點(diǎn)的運(yùn)動(dòng)時(shí)間為t.
(1)分別求過(guò)A、C兩點(diǎn)的直線和過(guò)B、C、A三點(diǎn)的拋物線的解析式;
(2)若a=1,求t為何值時(shí),四邊形DEFP為矩形?并求出此時(shí)直線PQ的解析式;
(3)是否存在這樣的a,t的值,使四邊形DEFP為正方形?若存在,求出此時(shí)a,t的值和正方形的面積;若不存在,說(shuō)明理由;
(4)以A、O、C為頂點(diǎn)的△AOC中,M是AC上一動(dòng)點(diǎn),過(guò)M作MN∥OA交OC于N,試問(wèn),在x軸上是否存在點(diǎn)R,使得△MNR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC中,以BC為直徑的圓交AB于點(diǎn)D,∠ACD=∠ABC.
(1)求證:CA是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知AE=6,∠ABC=25°,∠AEC=50°,求圓的直徑.(精確到0.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:黃岡難點(diǎn)課課練  八年級(jí)數(shù)學(xué)上冊(cè) 題型:022

已知點(diǎn)M(3P-25,3-P)是第三象限的整點(diǎn)(橫縱坐標(biāo)均為整數(shù)),則點(diǎn)M的坐標(biāo)為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案