如圖:△ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點,且∠EDF+∠BAF=180°.

(1)求證:DE=DF;

(2)若把最后一個條件改為:AE>AF,且∠AED+∠AFD=180°,那么結論還成立嗎?

(1)證明:作DM⊥AB于M,DN⊥AC于N,

又∵AD平分∠BAC,∴DM=DN,

∵∠EAF+∠EDF=180°,∴∠AED+∠AFD=360°-180°=180°,

∵∠AFD+∠CFD=180°,∴∠AED=∠CFD,

∴△DME≌△DNF,∴DE=DF.

(2)仍成立.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案