如圖,已知直線y=-
1
2
x+1交坐標軸于A,B兩點,以線段AB為邊向上作正方形ABCD,過點A,D,C的拋物線與直線另一個交點為E.

(1)請直接寫出點C,D的坐標;
(2)求拋物線的解析式;
(3)若正方形以每秒
5
個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(4)在(3)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.
(1)C(3,2)D(1,3);

(2)設(shè)拋物線為y=ax2+bx+c,拋物線過(0,1)(3,2)(1,3),
c=1
a+b+c=3
9a+3b+c=2

解得
a=-
5
6
b=
17
6
c=1
,
∴y=-
5
6
x2+
17
6
x+1;

(3)①當點A運動到x軸上時,t=1,
當0<t≤1時,如圖1,
∵∠OFA=∠GFB′,
tan∠OFA=
OA
OF
=
1
2

∴tan∠GFB′=
GB′
FB′
=
GB′
5
t
=
1
2
,
∴GB′=
5
2
t
∴S△FB′G=
1
2
FB′×GB′
=
1
2
×
5
5
t
2
=
5
4
t2
②當點C運動到x軸上時,t=2,
當1<t≤2時,如圖2,
A′B′=AB=
22+12
=
5
,
∴A′F=
5
t-
5
,
∴A′G=
5
t-
5
2
,
∵B′H=
5
t
2
,
∴S梯形A′B′HG=
1
2
(A′G+B′H)×A′B′
=
1
2
(
5
t-
5
2
+
5
t
2
5
=
5
2
t-
5
4

③當點D運動到x軸上時,t=3,
當2<t≤3時,如圖3,
∵A′G=
5
t-
5
2
,
∴GD′=
5
-
5
t-
5
2
=
3
5
-
5
t
2
,
∵S△AOF=
1
2
×1×2=1,OA=1,△AOF△GD′H
S△GD′H
S△AOF
=(
GD′
OA
)2

S△GD′H=(
3
5
-
5
t
2
)2
,
∴S五邊形GA′B′C′H=(
5
2-(
3
5
-
5
t
2
)2

=-
5
4
t2+
15
2
t-
25
4


(4)∵t=3,BB′=AA′=3
5

∴S陰影=S矩形BB′C′C=S矩形AA′D′D
=AD×AA′=
5
×3
5
=15.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖1,在平面直角坐標系中,將n個邊長為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上.現(xiàn)將矩形OABC繞點O順時針旋轉(zhuǎn),使得點B落到x軸的正半軸上(如圖2),設(shè)拋物線y=ax2+bx+c(a<0),如果拋物線同時經(jīng)過點O、B、C:
①當n=3時a=______;
②a關(guān)于n的關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8),
(1)試求拋物線的解析式;
(2)設(shè)點D是該拋物線的頂點,試求直線CD的解析式;
(3)若直線CD交x軸于點E,過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸上、下平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知在平面直角坐標系xOy中,二次函數(shù)y=x2-bx+c(b>0)的圖象經(jīng)過點A(-1,b),與y軸相交于點B,且∠ABO的余切值為3.
(1)求點B的坐標;
(2)求這個函數(shù)的解析式;
(3)如果這個函數(shù)圖象的頂點為C,求證:∠ACB=∠ABO.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?根據(jù)以上結(jié)論,請你直接寫出售價在什么范圍時,每個月的利潤不低于2200元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

矩形ABCD的邊長AB=3,AD=2,將此矩形放在平面直角坐標系中,使AB在x軸的正半軸上,點A在點B的左側(cè),另兩個頂點都在第一象限,且直線y=
3
2
x-1
經(jīng)過這兩個頂點中的一個.
(1)求A、B、C、D四點坐標;
(2)以AB為直徑作⊙M,記過A、B兩點的拋物線y=ax2+bx+c的頂點為P.
①若P點在⊙M和矩形內(nèi),求a的取值范圍;
②過點C作CF切⊙M于E,交AD于F,當PFAB時,求拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則這個二次函數(shù)的表達式是y=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線y=
1
2
x+
3
2
與直線y=x交于點A,點B在直線y=
1
2
x+
3
2
上,∠BOA=90°.拋物線y=ax2+bx+c過點A,O,B,頂點為點E.
(1)求點A,B的坐標;
(2)求拋物線的函數(shù)表達式及頂點E的坐標;
(3)設(shè)直線y=x與拋物線的對稱軸交于點C,直線BC交拋物線于點D,過點E作FEx軸,交直線AB于點F,連接OD,CF,CF交x軸于點M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知:拋物線y=
1
2
x2+bx+c與x軸交于A、B兩點,與y軸交于點C,經(jīng)過B、C兩點的直線是y=
1
2
x-2,連接AC.
(1)B、C兩點坐標分別為B(______,______)、C(______,______),拋物線的函數(shù)關(guān)系式為______;
(2)判斷△ABC的形狀,并說明理由;
(3)若△ABC內(nèi)部能否截出面積最大的矩形DEFC(頂點D、E、F、G在△ABC各邊上)?若能,求出在AB邊上的矩形頂點的坐標;若不能,請說明理由.

查看答案和解析>>

同步練習冊答案