已知拋物線y=ax2+bx+c與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0)與y軸的正半軸交于點(diǎn)C,如果x1、x2是方程x2-x-6=0的兩個根(x1<x2)且△ABC的面積為
15
2

(1)求此拋物線解析式;
(2)求直線AC的解析式;
(3)求直線BC的解析式.
(1)∵x1、x2是方程x2-x-6=0的兩個根(x1<x2
∴x1=-2,x2=3,
∵△ABC的面積為
15
2
,點(diǎn)C位于y軸的正半軸
5c
2
=
15
2

∴c=3
∴A,B,C的坐標(biāo)為(-2,0),(3,0),(0,3)
把(-2,0),(3,0),(0,3)代入y=ax2+bx+c得:
4a-2b+c=0
9a+3b+c=0
c=3

解得
a=-
1
2
b=
1
2
c=3

∴此拋物線解析式為y=-
1
2
x2+
1
2
x+3;

(2)設(shè)直線AC的解析式為y=kx+b
把(-2,0),(0,3)代入y=kx+b得:
-2k+b=0
b=3
,解得
k=
3
2
b=3


∴直線AC的解析式為y=
3
2
x+3;

(3)同理得:直線BC的解析式為y=-x+3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線AD與拋物線y=-x2+bx+c交于A(-1,0)和D(2,3)兩點(diǎn),點(diǎn)C、F分別為該拋物線與y軸的交點(diǎn)和頂點(diǎn).
(1)試求b、c的值和拋物線頂點(diǎn)F的坐標(biāo);
(2)求△ADC的面積;
(3)已知,點(diǎn)Q是直線AD上方拋物線上的一個動點(diǎn)(點(diǎn)Q與A、D不重合),在點(diǎn)Q的運(yùn)動過程中,有人說點(diǎn)Q、F重合時△AQD的面積最大,你認(rèn)為其說法正確嗎?若你認(rèn)為正確請求出此時△AQD的面積,若你認(rèn)為不正確請說明理由,并求出△AQD的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),已知A(2,0)、C(1,3
3
),將△OAC繞AC的中點(diǎn)G旋轉(zhuǎn)180°,點(diǎn)O落到點(diǎn)B的位置,拋物線y=ax2-2
3
x經(jīng)過點(diǎn)A,點(diǎn)D是拋物線的頂點(diǎn).
(1)求拋物線的表達(dá)式;
(2)判斷點(diǎn)B是否在拋物線上;
(3)若點(diǎn)P是x軸上A點(diǎn)左邊的一個動點(diǎn),當(dāng)以P、A、D為頂點(diǎn)的三角形與△OAB相似時,求出點(diǎn)P的坐標(biāo);
(4)若點(diǎn)M是y軸上的一個動點(diǎn),要使△MAD的周長最小,請直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一元二次方程x2+px+q+1=0的一根為2.
(1)求q關(guān)于p的關(guān)系式;
(2)求證:拋物線y=x2+px+q與x軸有兩個交點(diǎn);
(3)設(shè)拋物線y=x2+px+q的頂點(diǎn)為M,且與x軸相交于A(x1,0)、B(x2,0)兩點(diǎn),求使△AMB面積最小時的拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=(x+m)2+k的頂點(diǎn)為(1,-4)
(1)求二次函數(shù)的解析式及圖象與x軸交于A、B兩點(diǎn)的坐標(biāo).
(2)將二次函數(shù)的圖象沿x軸翻折,得到一個新的拋物線,求新拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知:二次函數(shù)y=x2-4x-a,下列說法中錯誤的個數(shù)是( 。
①若圖象與x軸有交點(diǎn),則a≤4
②若該拋物線的頂點(diǎn)在直線y=2x上,則a的值為-8
③當(dāng)a=3時,不等式x2-4x+a>0的解集是1<x<3
④若將圖象向上平移1個單位,再向左平移3個單位后過點(diǎn)(1,-2),則a=-1
⑤若拋物線與x軸有兩個交點(diǎn),橫坐標(biāo)分別為x1、x2,則當(dāng)x取x1+x2時的函數(shù)值與x取0時的函數(shù)值相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2-2x+3與x軸相交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C.
(1)求點(diǎn)A,點(diǎn)B和點(diǎn)C的坐標(biāo);
(2)求直線AC的解析式;
(3)設(shè)點(diǎn)M是第二象限內(nèi)拋物線上的一點(diǎn),且S△MAB=6,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)的圖象與x軸相交于A(x1,0),B(x2,0)兩點(diǎn),且A,B兩點(diǎn)間的距離為d,例如,通過研究其中一個函數(shù)y=x2-5x+6及圖象(如圖),可得出表中第2行的相關(guān)數(shù)據(jù).
(1)在表內(nèi)的空格中填上正確的數(shù);
(2)根據(jù)上述表內(nèi)d與△的值,猜想它們之間有什么關(guān)系?再舉一個符合條件的二次函數(shù),驗(yàn)證你的猜想;
(3)對于函數(shù)y=x2+px+q(p,q為常數(shù),△=p2-4q>0)證明你的猜想.聰明的小伙伴:你能再給出一種不同于(3)的正確證明嗎?我們將對你的出色表現(xiàn)另外獎勵3分.
y=x2+px+qpqx1x2d
y=x2-5x+6-561231
y=x2-
1
2
x
-
1
2
1
4
1
2
y=x2+x-2-2-23

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x-2-1012
y04664
從上表可知,下列說法中正確的是______.(填寫序號)
①拋物線與x軸的一個交點(diǎn)為(3,0);②函數(shù)y=ax2+bx+c的最大值為6;
③拋物線的對稱軸是直線x=
1
2
;   ④在對稱軸左側(cè),y隨x增大而增大.

查看答案和解析>>

同步練習(xí)冊答案