精英家教網(wǎng)將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的點(diǎn)M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點(diǎn)G(如圖).
(1)如果正方形邊長為2,M為CD邊中點(diǎn).求EM的長.
(2)如果M為CD邊的中點(diǎn),求證:DE:DM:EM=3:4:5;
(3)如果M為CD邊上的任意一點(diǎn),設(shè)AB=2a,問△CMG的周長是否與點(diǎn)M的位置有關(guān)?若有關(guān),請(qǐng)把△CMG的周長用含DM的長x的代數(shù)式表示;若無關(guān),請(qǐng)說明理由.
分析:(1)設(shè)DE為x,則根據(jù)折疊知道DM=1,EM=EA=2-x,然后在Rt△DEM中就可以求出x,繼而求出EM的長;
(2)由(1)可得出DE,DN,EM的長,從而求出它們的比值;
(3)△CMG的周長與點(diǎn)M的位置無關(guān).設(shè)DM=x,DE=y,則CM=2a-x,EM=2a-y,然后利用正方形的性質(zhì)和折疊可以證明△DEM∽△CMG,利用相似三角形的對(duì)應(yīng)邊成比例可以把CG,MG分別用x,y分別表示,△CMG的周長也用x,y表示,然后在Rt△DEM中根據(jù)勾股定理可以得到4a2-x2=4ay,結(jié)合△CMG的周長,就可以判斷△CMG的周長與點(diǎn)M的位置無關(guān).
解答:證明:(1)DE為x,則DM=1,EM=EA=2-x,
在Rt△DEM中,∠D=90°,
∴DE2+DM2=EM2
x2+12=(2-x)2
x=
3
4
,
∴EM=
5
4


(2)設(shè)正方形的邊長為2,由(1)知,DE=
3
4
,DM=1,EM=
5
4

∴DE:DM:EM=3:4:5;

(3)△CMG的周長與點(diǎn)M的位置無關(guān).
證明:設(shè)DM=x,DE=y,則CM=2a-x,EM=2a-y,
∵∠EMG=90°,
∴∠DME+∠CMG=90°.
∵∠DME+∠DEM=90°,
∴∠DEM=∠CMG,
又∵∠D=∠C=90°△DEM∽△CMG,
CG
DM
=
CM
DE
=
MG
EM
CG
x
=
2a-x
y
=
MG
2a-y

∴CG=
x(2a-x)
y
,MG=
(2a-x)(2a-y)
y
,
△CMG的周長為CM+CG+MG=
4a2-x2
y

在Rt△DEM中,DM2+DE2=EM2
即x2+y2=(2a-y)2
整理得4a2-x2=4ay,
∴CM+MG+CG=
4ay
y
=4a.
所以△CMG,的周長為4a,與點(diǎn)M的位置無關(guān).
點(diǎn)評(píng):本題考查翻折變換及正方形的性質(zhì),正方形的有些題目有時(shí)用代數(shù)的計(jì)算證明比用幾何方法簡(jiǎn)單,甚至幾何方法不能解決的用代數(shù)方法可以解決.本題綜合考查了相似三角形的應(yīng)用和正方形性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將正方形ABCD折疊,使點(diǎn)C與點(diǎn)D重合于正方形內(nèi)點(diǎn)P處,折痕分別為AF、BE,如果正方形ABCD的邊長是2,那么△EPF的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正方形ABCD的邊長為4,BE∥AC交DC的延長線于E.
(1)如圖1,連接AE,求△AED的面積.
(2)如圖2,設(shè)P為BE上(異于B、E兩點(diǎn))的一動(dòng)點(diǎn),連接AP、CP,請(qǐng)判斷四邊形APCD的面積與正方形ABCD的面積有怎樣的大小關(guān)系?并說明理由.
(3)如圖3,在點(diǎn)P的運(yùn)動(dòng)過程中,過P作PF⊥BC交AC于F,將正方形ABCD折疊,使點(diǎn)D與點(diǎn)F重合,其折線MN與PF的延長線交于點(diǎn)Q,以正方形的BC、BA為x軸、y軸建立平面直角坐標(biāo)系,設(shè)點(diǎn)Q的坐標(biāo)為(x,y),求y與x之間的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的點(diǎn)M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點(diǎn)G(如圖).
(1)如果M為CD邊的中點(diǎn),求證:DE:DM:EM=3:4:5;
(2)如果M為CD邊上的任意一點(diǎn),設(shè)AB=2a,問△CMG的周長是否有與點(diǎn)M的位置關(guān)系?若有關(guān),請(qǐng)把△CMG的周長用含CM的長x的代數(shù)式表示;若無關(guān),請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的點(diǎn)M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點(diǎn)G(如圖).如果DM:MC=3:2,則DE:DM:EM=(  )
A、7:24:25B、3:4:5C、5:12:13D、8:15:17

查看答案和解析>>

同步練習(xí)冊(cè)答案