如圖正方形ABCD的邊長(zhǎng)是a,△AEF是等邊三角形,點(diǎn)E在BC上,點(diǎn)F在CD上
(1)求證:△ABE≌△ADF;
(2)求等邊△AEF的邊長(zhǎng).

(1)證明:∵四邊形ABCD是正方形,
∴AB=AD,
∵△AEF是等邊三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF;
(2)∵Rt△ABE≌Rt△ADF,
∴BE=DF,
設(shè)BE=x,那么DF=x,CE=CF=a-x,
在Rt△ABE中,AE2=AB2+BE2,
在Rt△EFC中,F(xiàn)E2=CF2+CE2,
∴AB2+BE2=CF2+CE2
∴a2+x2=2(a-x)2,
∴x=2a±a,
∵x<a,
∴x=2a-a,
∴AE==a.
∴等邊△AEF的邊長(zhǎng)為:a.
分析:(1)根據(jù)正方形可知AB=AD,由等邊三角形可知AE=AF,于是可以證明出△ABE≌△ADF;
(2)再根據(jù)全等三角形的性質(zhì)得到BE=DF,設(shè)BE=x,那么DF=x,CE=CF=1-x,那么在Rt△ABE和Rt△ADF利用勾股定理可以列出關(guān)于x的方程,解方程即可求出BE,進(jìn)而求出等邊△AEF的邊長(zhǎng).
點(diǎn)評(píng):本題考查了正方形的性質(zhì),勾股定理的運(yùn)用,全等三角形的判定與性質(zhì),等邊三角形的性質(zhì)和等腰三角形的性質(zhì),解答本題的關(guān)鍵是對(duì)正方形和三角形的性質(zhì)的熟練運(yùn)用,此題難度不大,是一道比較不錯(cuò)的試題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ABCD的頂點(diǎn)C在直線a上,且點(diǎn)B,D到a的距離分別是1,2.則這個(gè)正方形的邊長(zhǎng)為( 。
A、1
B、2
C、4
D、
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ABCD的邊長(zhǎng)為2,AE=EB,線段MN的兩端點(diǎn)分別在CB、CD上滑動(dòng),且MN=1,當(dāng)CM為何值時(shí)△AED與以M、N、C為頂點(diǎn)的三角形相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖正方形ABCD的邊BC的延長(zhǎng)線上取點(diǎn)M,使CM=AC=2,AM與CD相交于點(diǎn)N,∠ANC=
 
度,△ACM的面積=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄂州)如圖正方形ABCD的邊長(zhǎng)為4,E、F分別為DC、BC中點(diǎn).
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖正方形ABCD的邊長(zhǎng)是a,△AEF是等邊三角形,點(diǎn)E在BC上,點(diǎn)F在CD上
(1)求證:△ABE≌△ADF;
(2)求等邊△AEF的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案