如圖,反比例函數(shù)的圖象與一次函數(shù)y=kx+b的圖象相交于兩點(diǎn)A(m,3)和B(﹣3,n).
(1)求一次函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫出使反比例函數(shù)值大于一次函數(shù)值的自變量x的取值范圍.
(1)y=x+1;(2)x<-3或0<x<2.
解析試題分析:(1)將A與B坐標(biāo)分別代入反比例解析式求出m與n的值,確定出A與B坐標(biāo),再將兩點(diǎn)代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;
(2)由A與B的橫坐標(biāo),利用函數(shù)圖象即可求出滿足題意x的范圍.
試題解析:(1)將A(m,3),B(-3,n)分別代入反比例解析式得:3=,n=,
解得:m=2,n=-2,
∴A(2,3),B(-3,-2),
將點(diǎn)A的坐標(biāo)與點(diǎn)B的坐標(biāo)代入一次函數(shù)解析式得:
,解得:k=1,b=1,
則一次函數(shù)解析式為y=x+1;
(2)∵A(2,3),B(-3,-2),
∴由函數(shù)圖象得:反比例函數(shù)值大于一次函數(shù)值的自變量x的取值范圍為x<-3或0<x<2.
考點(diǎn): 反比例函數(shù)與一次函數(shù)的交點(diǎn)問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:計(jì)算題
如圖,是反比例函數(shù)的圖象的一支.根據(jù)給出的圖象回答下列問題:
(1)該函數(shù)的圖象位于哪幾個象限?請確定m的取值范圍;
(2)在這個函數(shù)圖象的某一支上取點(diǎn)A(x1,y1)、B(x2,y2).如果y1<y2,那么x1與x2有怎樣的大小關(guān)系?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
我市某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時間x (小時)變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時間有多少小時?
(2)求k的值;
(3)當(dāng)x=16時,大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,∠ABO=90°,OB=4,AB=8,且反比例函數(shù)在第一象限內(nèi)的圖象分別交OA、AB于點(diǎn)C和點(diǎn)D,連結(jié)OD,若,
(1)求反比例函數(shù)解析式;
(2)求C點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知圖中的曲線是函數(shù) (m為常數(shù))圖象的一支.
(1)求常數(shù)m的取值范圍;
(2)若該函數(shù)的圖象與正比例函數(shù)圖象在第一象限的交點(diǎn)為A(2,n),求點(diǎn)A的坐標(biāo)及反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線上一點(diǎn)M(1,m)和雙曲線上一點(diǎn)N(n,3).
(1)求m、n的值;
(2)求△OMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸負(fù)半軸上,點(diǎn)B在y軸正半軸上,OA=OB,函數(shù)的圖象與線段AB交于M點(diǎn),且AM=BM.
(1)求點(diǎn)M的坐標(biāo);
(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,點(diǎn)A(﹣3,4)關(guān)于y軸的對稱點(diǎn)為點(diǎn)B,連接AB,反比例函數(shù)(x>0)的圖象經(jīng)過點(diǎn)B,過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P是該反比例函數(shù)圖象上任意一點(diǎn),過點(diǎn)P作PD⊥x軸于點(diǎn)D,點(diǎn)Q是線段AB上任意一點(diǎn),連接OQ、CQ.
(1)求k的值;
(2)判斷△QOC與△POD的面積是否相等,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com