【題目】 今年清明節(jié)前后某茶葉銷(xiāo)售商在青山茶廠先后購(gòu)進(jìn)兩批茶葉.第一批茶葉進(jìn)貨用了5.4萬(wàn)元,進(jìn)貨單價(jià)為a/千克.購(gòu)回后該銷(xiāo)售商將茶葉分類(lèi)包裝出售,把其中300千克精裝品以進(jìn)貨單件的兩倍出售;余下的簡(jiǎn)裝品以150/千克的價(jià)格出售,全部賣(mài)出.第二批進(jìn)貨用了5萬(wàn)元,這一次的進(jìn)貨單價(jià)每千克比第一批少了20元.購(gòu)回分類(lèi)包裝后精裝品占總質(zhì)量的一半,以200/千克的單價(jià)出售;余下的簡(jiǎn)裝品在這批進(jìn)貨單價(jià)的基礎(chǔ)上每千克加價(jià)40元后全部賣(mài)出.若其它成本不計(jì),第二批茶葉獲得的毛利潤(rùn)是3.5萬(wàn)元.

1)用含a的代數(shù)式表示第一批茶葉的毛利潤(rùn);

2)求第一批茶葉中精裝品每千克售價(jià).(總售價(jià)-總進(jìn)價(jià)=毛利潤(rùn))

【答案】1600a+-99000;(2240

【解析】

1)用總銷(xiāo)售額減去成本即可求出毛利潤(rùn);

2)因?yàn)榈谝慌M(jìn)貨單價(jià)為/千克,則第二批的進(jìn)貨單價(jià)為()/千克,根據(jù)第二批茶葉獲得的毛利潤(rùn)是35000元,列方程求解.

1)由題意得,第一批茶葉的毛利潤(rùn)為:

300×2a+150×(-300)-54000=600a+99000

2)設(shè)第一批進(jìn)貨單價(jià)為a/千克,

由題意得,××200+××(20+40)50000=35000,

解得:120,

經(jīng)檢驗(yàn):120是原分式方程的解,且符合題意.

則售價(jià)為:

答:第一批茶葉中精裝品每千克售價(jià)為240元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊△ABC的邊長(zhǎng)為4,點(diǎn)P,Q分別是邊BC,AC上一點(diǎn),PB1,則PA_____,若BQAP,則AQ_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2bxca≠0)的圖象如圖所示,有下列5個(gè)結(jié)論: c=0②該拋物線的對(duì)稱(chēng)軸是直線x=1;③當(dāng)x=1時(shí),y=2a;am+bm+a0m≠1);⑤設(shè)A100,y),B100y)在該拋物線上,yy其中正確的結(jié)論有___________ (寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家出發(fā)沿一條筆直的公路騎自行車(chē)前往圖書(shū)館看書(shū),他與圖書(shū)館之間的距離ykm)與出發(fā)時(shí)間th)之間的函數(shù)關(guān)系如圖1中線段AB所示,在小明出發(fā)的同時(shí),小明的媽媽從圖書(shū)館借書(shū)結(jié)束,沿同一條公路騎電動(dòng)車(chē)勻速回家,兩人之間的距離skm)與出發(fā)時(shí)間th)之間的函數(shù)關(guān)系式如圖2中折線段CDDEEF所示.

1)小明騎自行車(chē)的速度為   km/h、媽媽騎電動(dòng)車(chē)的速度為   km/h;

2)解釋圖中點(diǎn)E的實(shí)際意義,并求出點(diǎn)E的坐標(biāo);

3)求當(dāng)t為多少時(shí),兩車(chē)之間的距離為18km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 小明遇到這樣一個(gè)問(wèn)題

如圖1,ABC中,∠ACB=90°,點(diǎn)DAB上,且BD=BC,求證:∠ABC=2ACD

小明發(fā)現(xiàn),除了直接用角度計(jì)算的方法外,還可以用下面兩種方法:

方法2:如圖2,作BECD,垂足為點(diǎn)E

方法3:如圖3,作CFAB,垂足為點(diǎn)F

根據(jù)閱讀材料,從三種方法中任選一種方法,證明∠ABC=2ACD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

(1)求證:ADE∽△ABC;

(2)若AD=3,AB=5,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xOy中,A04),B8,0),C8,4).

1)試說(shuō)明四邊形AOBC是矩形.

2)在x軸上取一點(diǎn)D,將△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△D'CB'(點(diǎn)D'與點(diǎn)D對(duì)應(yīng)).

①若OD3,求點(diǎn)D'的坐標(biāo).

②連接AD'、OD',則AD'+OD'是否存在最小值,若存在,請(qǐng)直接寫(xiě)出最小值及此時(shí)點(diǎn)D'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖乙,△ABC 和△ADE 是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線 BD,CE的交點(diǎn).

(1)如圖甲,將△ADE 繞點(diǎn)A 旋轉(zhuǎn),當(dāng) C、D、E 在同一條直線上時(shí),連接BD、BE,則下列給出的四個(gè)結(jié)論中,其中正確的是哪幾個(gè).(回答直接寫(xiě)序號(hào))

①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2)

(2)若 AB=4,AD=2,把△ADE 繞點(diǎn) A 旋轉(zhuǎn),

①當(dāng)∠CAE=90°時(shí),求 PB 的長(zhǎng);

②直接寫(xiě)出旋轉(zhuǎn)過(guò)程中線段 PB 長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)探究:

(1)如圖1,對(duì)折矩形紙片ABCD,使ADBC重合,得到折痕EF,把紙片展開(kāi);再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BM,同時(shí)得到線段BN,MN.請(qǐng)你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.

(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MNBM的數(shù)量關(guān)系,寫(xiě)出折疊方案,并結(jié)合方案證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案