【題目】 “六一”前夕質(zhì)監(jiān)部門從某超市經(jīng)銷的兒童玩具、童車和童裝中共抽查了300件兒童用品,以下是根據(jù)抽查結(jié)果繪制出的不完整的統(tǒng)計表和扇形圖;
類別 | 兒童玩具 | 童車 | 童裝 |
抽查件數(shù) | 90 |
請根據(jù)上述統(tǒng)計表和扇形提供的信息,完成下列問題:
(1)分別補全上述統(tǒng)計表和統(tǒng)計圖;
(2)已知所抽查的兒童玩具、童車、童裝的合格率分別為90%、88%、80%,若從該超市的這三類兒童用品中隨機購買一件,買到合格品的概率是多少?
【答案】(1)詳見解析(2)85%
【解析】
(1)根據(jù)童車的數(shù)量是300×25%,童裝的數(shù)量是300-75-90,兒童玩具占得百分比是90÷300
×100%,童裝占得百分比1-30%-25%,即可補全統(tǒng)計表和統(tǒng)計圖.
(2)先分別求出兒童玩具、童車、童裝中合格的數(shù)量之和,再根據(jù)概率公式計算即可.
解:(1)童車的數(shù)量是300×25%=75,童裝的數(shù)量是300-75-90=135;
兒童玩具占得百分比是(90÷300)×100%=30%.童裝占得百分比1-30%-25%=45%.
補全統(tǒng)計表和統(tǒng)計圖如下:
類別 | 兒童玩具 | 童車 | 童裝 |
抽查件數(shù) | 90 | 75 | 135 |
(2)∵兒童玩具中合格的數(shù)量是90×90%=81,童車中合格的數(shù)量是75×88%=66,童裝中合格的數(shù)量是135×80%=108,
∴從該超市的這三類兒童用品中隨機購買一件,購買到合格品的概率是
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求圖象為下列拋物線的二次函數(shù)的表達式;
(1)拋物線y=ax2+bx+2經(jīng)過點(﹣2,6)、(2,2).
(2)拋物線的頂點坐標(biāo)為(3,﹣5),且拋物線經(jīng)過點(0,1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某面粉廠生產(chǎn)某品牌的面粉按質(zhì)量分5個檔次,生產(chǎn)第一檔(最低檔次)面粉,每天能生產(chǎn)55噸,每噸利潤1000元.生產(chǎn)面粉的質(zhì)量每提高一個檔次,每噸利潤會增加200元,但每天的產(chǎn)量會減少5噸.
(1)若生產(chǎn)第檔次的面粉每天的總利潤為元(其中為正整數(shù),且),求生產(chǎn)哪個檔次的面粉時,每天的利潤最大,每天的最大利潤是多少元?
(2)若生產(chǎn)第檔次的面粉一天的總利潤為60000元,求該面粉的質(zhì)量檔次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】是等邊三角形,點P在的延長線上,以P為中心,將線段逆時針旋轉(zhuǎn)n°()得線段,連接,.
(1)如圖,若,畫出當(dāng)時的圖形,并寫出此時n的值;
(2)M為線段的中點,連接.寫出一個n的值,使得對于延長線上任意一點P,總有,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.
(1)求證:FC=FB;
(2)求證:CG是⊙O的切線;
(3)若FB=FE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于點D,DE恰好是AB的垂直平分線,垂足為E.若BC=6,則AB的長為( )
A.3B.4C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于原點O和點A(6,0),拋物線的頂點為B.
(1)求該拋物線的解析式和頂點B的坐標(biāo);
(2)若動點P從原點O出發(fā),以每秒1個長度單位的速度沿線段OB運動,設(shè)點P運動的時間為t(s).問當(dāng)t為何值時,△OPA是直角三角形?
(3)若同時有一動點M從點A出發(fā),以2個長度單位的速度沿線段AO運動,當(dāng)P、M其中一個點停止運動時另一個點也隨之停止運動.設(shè)它們的運動時間為t(s),連接MP,當(dāng)t為何值時,四邊形ABPM的面積最小?并求此最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C是的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且,CE的延長線交DB的延長線于點F,AF交⊙O于點H,連接BH.
(1)求證:BD是⊙O的切線;(2)當(dāng)OB=2時,求BH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形,點,分別在上,且,與相交于點.
(1)求證:;
(2)如圖2,將沿直線翻折得到對應(yīng)的,過點作,交射線于點,與相交于點,連接.
①試判斷四邊形的形狀,并說明理由.
②若四邊形的面積為,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com