【題目】從三角形不是等腰三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

如圖1,在中,CD為角平分線,,,求證:CD的完美分割線.

中,,CD的完美分割線,且為等腰三角形,求的度數(shù).

如圖2,中,,,CD的完美分割線,且是以CD為底邊的等腰三角形,求完美分割線CD的長.

【答案】(1)見解析;(2);(3)

【解析】

根據(jù)完美分割線的定義只要證明不是等腰三角形,是等腰三角形,即可.

分三種情形討論即可如圖2,當時,如圖3中,當時,如圖4中,當時,分別求出即可.

,利用,得,列出方程即可解決問題.

解:如圖1中,,

,

不是等腰三角形,

平分,

,

,

為等腰三角形,

,,

的完美分割線.

時,如圖2,

,

時,如圖3中,,

,

,

時,如圖4中,,

,

,

,矛盾,舍棄.

由已知

,

,設,

,

,

,

,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球

B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨

C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,再填空解題:

①方程x2﹣x﹣6=0的根是x1=3,x2=﹣2,則x1+x2=1,x1x2=﹣6;

②方程2x2﹣7x+3=0的根是x1=,x2=3,則x1+x2=,x1x2=

根據(jù)以上①②你能否猜出:

如果關于x的一元二次方程ax2+bx+c=0(a≠0,且a、b、c為常數(shù),b2﹣4ac≥0)有兩根x1、x2,那么x1+x2、x1x2與系數(shù)a、b、c有什么關系?請寫出你的猜想并說明理由.

利用公式法求出方程的根即可.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC≌△EDC
1)若DEBC(如圖1),判斷△ABC的形狀并說明理由.
2)連結BE,交ACF,點HCE上的點,且CH=CF,連結DHBEK(如圖2).求證:∠DKF=ACB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩同學用如圖所示的兩個轉盤每個轉盤被分成面積相等的4個扇形做游戲,游戲規(guī)則:甲同學轉動甲轉盤,指針所致的數(shù)作為x;已同學轉動乙轉盤,指針所指的數(shù)作為y,若指針落在分界線上,則需要重新轉動轉盤.

用列表法或畫樹狀圖法表示出的所有可能出現(xiàn)的結果.

求甲、乙兩同學各轉轉盤一次所確定的點落在反比例函數(shù)的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016江蘇省連云港市)環(huán)保局對某企業(yè)排污情況進行檢測,結果顯示:所排污水中硫化物的濃度超標,即硫化物的濃度超過最高允許的1.0mg/L.環(huán)保局要求該企業(yè)立即整改,在15天以內(含15天)排污達標.整改過程中,所排污水中硫化物的濃度ymg/L)與時間x(天)的變化規(guī)律如圖所示,其中線段AB表示前3天的變化規(guī)律,從第3天起,所排污水中硫化物的濃度y與時間x成反比例關系.

1)求整改過程中硫化物的濃度y與時間x的函數(shù)表達式;

2)該企業(yè)所排污水中硫化物的濃度,能否在15天以內不超過最高允許的1.0mg/L?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需要繞行附近的B地,已知B地位于A地的北偏東67°方向,距離A520km,C地位于B地南偏西30°方向,若要打通穿山隧道建高鐵,求線段AC的長(結果保留整數(shù))(參考數(shù)據(jù):≈1.73,sin67°≈,cos67°≈,tan67°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,且滿足:,長方形在坐標系中(如圖1),點為坐標系的原點.

1)求點的坐標.

2)如圖2,若點從點出發(fā),以2個單位/秒的速度向右運動(不超過點),點從原點出發(fā),以1個單位/秒的速度向下運動(不超過點),設兩點同時出發(fā),在它們運動的過程中,四邊形的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A-1,0),B3,0)兩點.

1)求該拋物線的解析式;

2)求該拋物線的對稱軸以及頂點坐標;

3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標.

查看答案和解析>>

同步練習冊答案