精英家教網 > 初中數學 > 題目詳情
一個長方形的長為5
2
+2
5
,寬為5
2
-2
5
,則這個長方形的面積為
30
30
分析:由長與寬的乘積表示出長方形的面積,利用平方差公式計算即可得到結果.
解答:解:根據題意得:(5
2
+2
5
)×(5
2
-2
5
)=50-20=30,
則這個長方形的面積為30.
故答案為:30.
點評:此題考查了二次根式的混合運算,熟練掌握運算法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網小明在研究直角三角形的邊長時,發(fā)現(xiàn)了下面的式子:
①當三邊長分別為3、4、5時,32+42=52;②當三邊長分別為6、8、10時,62+82=102;③當三邊長分別為5、12、13時,52+122=132; …
(1)從中小明發(fā)現(xiàn)了一個規(guī)律:在直角△ABC中,若∠B=90°,則它的三邊長滿足
 

(2)已知長方形ABCD中AB=8,BC=5,E是AB的中點,點F在BC上,△DEF的面積為16,求點D到直線EF的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

小杰和他的同學組成了“愛琢磨”學習小組,有一次,他們碰到這樣一道題:
“已知正方形ABCD,點E、F、G、H分別在邊AB、BC、CD、DA上,若EG⊥FH,則EG=FH“
經過思考,大家給出了以下兩個方案:
(甲)過點A作AM∥HF交BC于點M,過點B作BN∥EG交CD于點N;
(乙)過點A作AM∥HF交BC于點M,作AN∥EG交CD的延長線于點N;
小杰和他的同學順利的解決了該題后,大家琢磨著想改變問題的條件,作更多的探索.

(1)對小杰遇到的問題,請在甲、乙兩個方案中任選一個,加以證明(如圖1);
精英家教網
(2)如果把條件中的“正方形”改為“長方形”,并設AB=2,BC=3(如圖2),試探究EG、FH之間有怎樣的數量關系,并證明你的結論;
(3)如果把條件中的“EG⊥FH”改為“EG與FH的夾角為45°”,并假設正方形ABCD的邊長為1,F(xiàn)H的長為
5
2
(如圖3),試求EG的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

小曼和他的同學組成了“愛琢磨”學習小組,有一次,他們碰到這樣一道題:“已知正方形ABCD,點E、F、G、H分別在邊AB、BC、CD、DA上,若EG⊥FH,則EG=FH.”為了解決這個問題,經過思考,大家給出了以下兩個方案:
方案一:過點A作AM∥HF交BC于點M,過點B作BN∥EG交CD于點N;
方案二:過點A作AM∥HF交BC于點M,過點A作AN∥EG交CD于點N.…
(1)對小曼遇到的問題,請在甲、乙兩個方案中任選一個加以證明(如圖(1)).
(2)如果把條件中的“正方形”改為“長方形”,并設AB=2,BC=3(如圖(2)),是探究EG、FH之間有怎樣的數量關系,并證明你的結論.
(3)如果把條件中的“EG⊥FH”改為“EG與FH的夾角為45°”,并假設正方形ABCD的邊長為1,F(xiàn)H的長為
5
2
(如圖(3)),試求EG的長度.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

一個長為4cm,寬為3cm的長方形木板在桌面上做無滑動的翻滾(順時針方向),木板點A位置的變化為A→Al→A2,其中第二次翻滾被面上一小木塊擋住,使木板與桌面成30°的角,則點A滾到A2位置時共走過的路徑長為( 。

查看答案和解析>>

同步練習冊答案