【題目】解密數(shù)學(xué)魔術(shù):魔術(shù)師請(qǐng)觀眾心想一個(gè)數(shù),然后將這個(gè)數(shù)按以下步驟操作:

魔術(shù)師能立刻說(shuō)出觀眾想的那個(gè)數(shù).

1)如果小玲想的數(shù)是,請(qǐng)你通過(guò)計(jì)算幫助她告訴魔術(shù)師的結(jié)果;

2)如果小明想了一個(gè)數(shù)計(jì)算后,告訴魔術(shù)師結(jié)果為85,那么魔術(shù)師立刻說(shuō)出小明想的那個(gè)數(shù)是:__________;

3)觀眾又進(jìn)行了幾次嘗試,魔術(shù)師都能立刻說(shuō)出他們想的那個(gè)數(shù).若設(shè)觀眾心想的數(shù)為,請(qǐng)你按照魔術(shù)師要求的運(yùn)算過(guò)程列代數(shù)式并化簡(jiǎn),再用一句話說(shuō)出這個(gè)魔術(shù)的奧妙.

【答案】12;(280;(3)見解析

【解析】

1)把-3代入操作步驟計(jì)算即可得到結(jié)果;

2)設(shè)這個(gè)數(shù)為x,然后列出方程;

3)把a代入,然后化簡(jiǎn)代數(shù)式即可.

解:(1)(﹣3×36)÷3+72;

2)設(shè)這個(gè)數(shù)為x,

3x6)÷3+785

解得:x80,

故答案為:80;

3)設(shè)觀眾想的數(shù)為a,

因此,魔術(shù)師只要將最終結(jié)果減去5,就能得到觀眾想的數(shù)了.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在銳角中,, ,將繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn),得到.(1)如圖1,當(dāng)點(diǎn)在線段的延長(zhǎng)線上時(shí),則的度數(shù)為______________度;(2)如圖2,點(diǎn)為線段中點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),在繞點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)過(guò)程中,點(diǎn)的對(duì)應(yīng)點(diǎn)是點(diǎn),則線段長(zhǎng)度最小值是_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠為了檢驗(yàn)甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍為 的產(chǎn)品為合格),隨機(jī)各抽取了 個(gè)樣品進(jìn)行檢測(cè),過(guò)程如下: 收集數(shù)據(jù)(單位:):

甲車間:

乙車間:

整理數(shù)據(jù)(表 1):

分析數(shù)據(jù)(表 2):

應(yīng)用數(shù)據(jù):

1)直接寫出表 2 中的 , ;

2)估計(jì)甲車間生產(chǎn)的 個(gè)該款新產(chǎn)品中合格產(chǎn)品有多少個(gè)?

3)結(jié)合上述數(shù)據(jù)信息,請(qǐng)判斷哪個(gè)車間生產(chǎn)的新產(chǎn)品更好,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在四邊形ABCD中,ABADADBC,且ABBC4,AD2,點(diǎn)E是邊BC上的一個(gè)動(dòng)點(diǎn),EFBCAD于點(diǎn)F,將四邊形ABCD沿EF所在直線折疊,若兩邊重疊部分的面積為3,則BE的長(zhǎng)為( 。

A.B.C.D.4+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某月食品加工廠以2萬(wàn)元引進(jìn)一條新的生產(chǎn)加工線.已知加工這種食品的成本價(jià)每袋20元,物價(jià)部門規(guī)定:該食品的市場(chǎng)銷售價(jià)不得高于每袋35元,若該食品的月銷售量y(千袋)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系為:y(月獲利=月銷售收入﹣生產(chǎn)成本﹣投資成本).

1)當(dāng)銷售單價(jià)定位25元時(shí),該食品加工廠的月銷量為多少千袋;

2)求該加工廠的月獲利M(千元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

3)求銷售單價(jià)范圍在30x35時(shí),該加工廠是盈利還是虧損?若盈利,求出最大利潤(rùn);若虧損,最小虧損是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yxxb)﹣y軸相交于A點(diǎn),與x軸相交于B、C兩點(diǎn),且點(diǎn)C在點(diǎn)B的右側(cè),設(shè)拋物線的頂點(diǎn)為P

1)若點(diǎn)B與點(diǎn)C關(guān)于直線x1對(duì)稱,求b的值;

2)若OBOA,求△BCP的面積;

3)當(dāng)﹣1x1時(shí),該拋物線上最高點(diǎn)與最低點(diǎn)縱坐標(biāo)的差為h,求出hb的關(guān)系;若h有最大值或最小值,直接寫出這個(gè)最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】折紙是一種許多人熟悉的活動(dòng).近些年,經(jīng)過(guò)許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:

(綜合與實(shí)踐)

操作一:如圖1,將正方形紙片ABCD對(duì)折,使點(diǎn)A與點(diǎn)D重合,點(diǎn)B與點(diǎn)C重合,再將正方形紙片ABCD展開,得到折痕MN;

操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點(diǎn)D的對(duì)應(yīng)的點(diǎn)為D′;

操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開,折痕MD′與邊AB交于點(diǎn)P

(問題解決)

請(qǐng)?jiān)趫D3中解決下列問題:

1)求證:BPDP;

2APBP   ;

(拓展探究)

3)在圖3的基礎(chǔ)上,將正方形紙片ABCD的左下角沿CD′折疊再展開,折痕CD′與邊AB交于點(diǎn)Q.再將正方形紙片ABCD過(guò)點(diǎn)D′折疊,使點(diǎn)A落在AD邊上,點(diǎn)B落在BC邊上,然后再將正方形紙片ABCD展開,折痕EF與邊AD交于點(diǎn)E,與邊BC交于點(diǎn)F,如圖4.試探究:點(diǎn)Q與點(diǎn)E分別是邊AB,AD的幾等分點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果店購(gòu)進(jìn)一批優(yōu)質(zhì)晚熟芒果,進(jìn)價(jià)為10/千克,售價(jià)不低于15/千克,且不超過(guò)40/千克,根據(jù)銷售情況發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量y(千克)與該天的售價(jià)x(/千克)之間滿足如表所示的一次函數(shù)關(guān)系:

(1)寫出銷售量y與售價(jià)x之間的函數(shù)關(guān)系式;

(2)設(shè)某天銷售這種芒果獲利W元,寫出W與售價(jià)x之間的函數(shù)關(guān)系式,并求出當(dāng)售價(jià)為多少元時(shí),當(dāng)天的獲利最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情突發(fā),危難時(shí)刻,從決定建造到交付使用,雷神山、火神山醫(yī)院僅用時(shí)十天,其建造速度之快,充分展現(xiàn)了中國(guó)基建的巨大威力!這樣的速度和動(dòng)員能力就是全 國(guó)人民的堅(jiān)定信心和盡快控制疫情的底氣!改革開放年來(lái),中國(guó)已經(jīng)成為領(lǐng)先世界的基 建強(qiáng)國(guó),如圖①是建筑工地常見的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)在線段上運(yùn)動(dòng),垂足為點(diǎn)的延長(zhǎng)線交于點(diǎn) ,經(jīng)測(cè)量

1)求線段的長(zhǎng)度;(結(jié)果 精確到

2)連接,當(dāng)線段時(shí), 求點(diǎn)和點(diǎn)之間的距離.(結(jié)果 精確到,參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案