【題目】矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E.
(1)求證:△ABE是等腰直角三角形;
(2)若∠CAE=15°,求證:△ABO是等邊三角形;
(3)在(2)的條件下,求∠BOE的度數(shù).
【答案】(1)證明見解析;(2)證明見解析;(3)∠BOE=75°.
【解析】分析:(1)由矩形的性質(zhì)和角平分線的性質(zhì)得出△ABE是等腰直角三角形;
(2)由矩形的性質(zhì)得出OA=OB,再由角的和差關系可得∠AOB=60°,即可得出結(jié)論;
(3)由(2)的結(jié)論得出∠OBE=30°,證出OB=BE,求出∠BOE的度數(shù)即可.
詳解:(1)∵四邊形ABCD是矩形,∴∠BAD=∠ABE=90°.
∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形;
(2)∵四邊形ABCD是矩形,∴OA=OB.
∵∠CAE=15°,∴∠BAO=45°+15°=60°,∴△AOB是等邊三角形;
(3)由(2)得:△AOB是等邊三角形,∴∠ABO=60°,∴∠OBE=90°﹣60°=30°.
∵BE=AB,OB=AB,∴OB=BE,∴∠BOE=(180°﹣30°)=75°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y= x﹣2與x軸交于點A,與y軸交于點C,經(jīng)過A、C兩點的拋物線與軸交于另一點B(1,0).
(1)求該拋物線的解析式.
(2)在直線y= x﹣2上方的拋物線上存在一動點D,連接AD、CD,設點D的橫坐標為m,△DCA的面積為S,求S與m的函數(shù)關系式,并求出S的最大值.
(3)在拋物線上是否存在一點M,使得以M為圓心,以 為半徑的圓與直線AC相切?若存在,請求出點M的坐標;若不存在,請說明理由.
(4)在y軸的正半軸上存在一點P,使∠APB的值最大,請直接寫出當∠APB最大時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是⊙O的切線,切點為A,AB是⊙O的弦.過點B作BC∥AD,交⊙O于點C,連接AC,過點C作CD∥AB,交AD于點D.連接AO并延長交BC于點M,交過點C的直線于點P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關系,并說明理由;
(2)若AB=9,BC=6.求PC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副三角板按如圖放置,則下列結(jié)論:
①如果∠2=30°,則有AC∥DE;
②∠BAE+∠CAD =180°;
③如果BC∥AD,則有∠2=45°;
④如果∠CAD=150°,必有∠4=∠C;
正確的有( )
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC上的點,,,求證:DF∥AC.
證明:∵ (已知),∠1=∠3,∠2=∠4( ),
∴∠3=∠4(等量代換).
∴____________________( ).
∴∠C=∠ABD( ).
∵∠C=∠D( ),
∴∠D=__________( ).
∴AC∥DF( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y1與y2相交于點C(1,2),y1與x軸交于點D,與y軸交于點(0,1);y2與x軸交于點B(3,0),與y軸交于點A.下列說法正確的有_____________.
①y1的解析式為y1=x+2②OA=OB③∠CDB=45°④△AOB≌△BCD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,EG、EM、FM分別平分∠AEF,∠BEF,∠EFD,則圖中與∠DFM相等的角(不含它本身)的個數(shù)為( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩位同學將一個二次三項式因式分解,一位同學因看錯了一次項系數(shù)而分解成2,另一位同學因看錯了常數(shù)項而分解成2,請將原多項式因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,∠C=90°,AB的垂直平分線MN交BC于點D.
(1)如果∠CAD=20°,求∠B的度數(shù);
(2)如果∠CAB=50°,求∠CAD的度數(shù);
(3)如果∠CAD:∠DAB=1:2,求∠CAB的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com