精英家教網(wǎng)如圖,若⊙O的直徑AB與弦AC的夾角為30°,切線CD與AB的延長(zhǎng)線交于點(diǎn)D,且⊙O的半徑為2,則CD的長(zhǎng)為
 
分析:連接OC,BC,AB是直徑,CD是切線,先求得∠OCD=90°再求∠COB=2∠A=60°,利用三角函數(shù)即可求得CD的值.
解答:精英家教網(wǎng)解:連接OC,BC,AB是直徑,則∠ACB=90°,
∵CD是切線,
∴∠OCD=90°,
∵∠A=30°,
∴∠COB=2∠A=60°,CD=OC•tan∠COD=2
3

故答案為:2
3
點(diǎn)評(píng):本題考查了切線的性質(zhì)①圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.②經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn).③經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知AB與⊙O相切于點(diǎn)C,OA=OB,OA、OB與⊙O分別交于點(diǎn)D、E.
(I)如圖①,若⊙O的直徑為8,AB=10,求OA的長(zhǎng)(結(jié)果保留根號(hào));
(II)如圖②,連接CD、CE,若四邊形ODCE為菱形,求
ODOA
的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•資陽(yáng))在某校校園文化建設(shè)活動(dòng)中,小彬同學(xué)為班級(jí)設(shè)計(jì)了一個(gè)班徽,這個(gè)班徽?qǐng)D案由一對(duì)大小相同的較大半圓挖去一對(duì)大小相同的較小半圓而得.如圖,若它們的直徑在同一直線上,較大半圓O1的弦AB∥O1O2,且與較小半圓O2相切,AB=4,則班徽?qǐng)D案的面積為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通二模)如圖,AB與⊙O相切于點(diǎn)C,OA=OB.
(1)如圖①,若⊙O的直徑為8cm,AB=10cm,求OA的長(zhǎng)(結(jié)果保留根號(hào));
(2)如圖②,OA、OB與⊙O分別交于點(diǎn)D、E,連接CD、CE,若四邊形ODCE為菱形,求
ODOA
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆天津市河西區(qū)九年級(jí)上學(xué)期期中質(zhì)量調(diào)查數(shù)學(xué)卷 題型:解答題

已知AB與⊙O相切于點(diǎn)C,OA=OB,OA,OB與⊙O分別交予點(diǎn)D,E

(I)如圖①,若⊙O的直徑為8,AB=10,求OA得長(zhǎng)(結(jié)果保留根號(hào));

(II)如圖②,連接CD,CE,若四邊形ODCE為菱形,求的值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案