【題目】隨著人民的生活水平的不斷提高,學(xué)生身邊的零用錢也多了.夏雪同學(xué)調(diào)查了班級(jí)同學(xué)身上有多少零用錢,將每位同學(xué)的零用錢記錄下來,下面是全班40名同學(xué)的零用錢的數(shù)目(單位:元)
2,5,0,5,2,5,6,5,0,5,5,5,2,5,8,0,5,5,2,5,
5,8,6,5,2,5,5,2,5,6,5,5,0,6,5,6,5,2,5,0.
(1)請(qǐng)你寫出同學(xué)的零用錢(0元,2元,5元,6元8元)出現(xiàn)的頻數(shù);
(2)求出同學(xué)的零用錢的平均數(shù)、中位數(shù)和眾數(shù);
(3)假如老師隨機(jī)問一個(gè)同學(xué)的零用錢,老師最有可能得到的回答是多少元?
【答案】(1)0元的頻數(shù)是5,2元的頻數(shù)是7,5元的頻數(shù)是21,6元的頻數(shù)是5,8元的頻數(shù)是2;(2)平均數(shù)是4.125,中位數(shù)是5;眾數(shù)是5;(3)老師最有可能得到的回答是5元.
【解析】
(1)頻數(shù)即為該組數(shù)據(jù)出現(xiàn)的次數(shù),仔細(xì)觀察后找到該數(shù)據(jù)出現(xiàn)的次數(shù)即為該組數(shù)據(jù)的頻數(shù).
(2)根據(jù)平均數(shù)、中位數(shù)和眾數(shù)的計(jì)算方法,進(jìn)行計(jì)算可得答案;
(3)因?yàn)?/span>“5元”的頻數(shù)最大,即其頻率最大,故最有可能得到的回答是5元.
(1)0元的頻數(shù)是5,2元的頻數(shù)是7,5元的頻數(shù)是21,6元的頻數(shù)是5,8元的頻數(shù)是2;
(2)平均數(shù)是(2×7+5×21+6×5+8×2)=4.125,
將數(shù)據(jù)從小到大排列,找第20、21人的數(shù)值,均為5,故中位數(shù)是5;5的數(shù)目最多,故眾數(shù)是5
(3)因?yàn)?/span>“5元”的頻數(shù)最大,即其頻率最大;故老師最有可能得到的回答是5元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)愛因斯坦的相對(duì)論可知,任何物體的運(yùn)動(dòng)速度不能超過光速(3×105km/s),因?yàn)橐粋(gè)物體達(dá)到光速需要無窮多的能量,并且時(shí)光會(huì)倒流,這在現(xiàn)實(shí)中是不可能的.但我們可讓一個(gè)虛擬物超光速運(yùn)動(dòng),例如:直線l,m表示兩條木棒相交成的銳角的度數(shù)為10°,它們分別以與自身垂直的方向向兩側(cè)平移時(shí),它們的交點(diǎn)A也隨著移動(dòng)(如圖箭頭所示),如果兩條直線的移動(dòng)速度都是光速的0.2倍,則交點(diǎn)A的移動(dòng)速度是光速的_____倍.(結(jié)果保留兩個(gè)有效數(shù)字).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店準(zhǔn)備購進(jìn)一批電冰箱和空調(diào),每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商店用8000元購進(jìn)電冰箱的數(shù)量與用6400元購進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)已知電冰箱的銷售價(jià)為每臺(tái)2100元,空調(diào)的銷售價(jià)為每臺(tái)1750元.若商店準(zhǔn)備購進(jìn)這兩種家電共100臺(tái),其中購進(jìn)電冰箱x臺(tái)(33≤x≤40),那么該商店要獲得最大利潤應(yīng)如何進(jìn)貨?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),直線BD交拋物線于點(diǎn)D,并且,.
(1)求拋物線的解析式;
(2)已知點(diǎn)M為拋物線上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C,求面積的最大值;
(3)在(2)中面積最大的條件下,過點(diǎn)M作直線平行于y軸,在這條直線上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、E分別在△ABC的邊AC、AB上,延長DE、CB交于點(diǎn)F,且AEAB=ADAC.
(1)求證:∠FEB=∠C;
(2)連接AF,若,求證:EFAB=ACFB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的盒子里裝有若干個(gè)黑、白兩種顏色球,這些球除顏色外其余完全相同.小穎做摸球?qū)嶒?yàn),攪勻后,她從盒子里隨機(jī)摸出一個(gè)球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過程,下表是實(shí)驗(yàn)中的一組統(tǒng)計(jì)數(shù)據(jù):
摸球的次數(shù)n | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次數(shù)m | 65 | 124 | 178 | 302 | 481 | 599 | 1803 |
摸到白球的頻率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)若從盒子里隨機(jī)摸出一個(gè)球,則摸到白球的概率估計(jì)值為 (精確到0.1);
(2)若盒中黑球與白球若共有5個(gè),小穎一次摸出兩個(gè)球,請(qǐng)計(jì)算這兩個(gè)球顏色不相同的概率,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,連接AC,BD交于點(diǎn)M.填空:
①的值為 ;
②∠AMB的度數(shù)為 .
(2)類比探究
如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點(diǎn)M.請(qǐng)判斷的值及∠AMB的度數(shù),并說明理由;
(3)拓展延伸
在(2)的條件下,將△OCD繞點(diǎn)O在平面內(nèi)旋轉(zhuǎn),AC,BD所在直線交于點(diǎn)M,若OD=1,OB=,請(qǐng)直接寫出當(dāng)點(diǎn)C與點(diǎn)M重合時(shí)AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美觀,在加工太陽鏡時(shí)將下半部分輪廓制作成拋物線的形狀(如圖所示),對(duì)應(yīng)的兩條拋物線關(guān)于軸對(duì)稱, 軸,,最低點(diǎn) 在軸上,高 ,,則右輪廓所在拋物線的解析式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形AOBC的頂點(diǎn)坐標(biāo)分別為A(0,3),O(0,0),B(4,0),C(4,3),動(dòng)點(diǎn)F在邊BC上(不與B.C重合),過點(diǎn)F的反比例函數(shù)y=的圖象與邊AC交于點(diǎn)E,直線EF分別與y軸和x軸相交于點(diǎn)D和G.給出下列命題:①若k=4,則△OEF的面積為;②若k=,則點(diǎn)C關(guān)于直線EF的對(duì)稱點(diǎn)在x軸上;③滿足題設(shè)的k的取值范圍是0<k≤12;④若DEEG=,則k=1.其中正確的命題的序號(hào)是____________(填序號(hào)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com