【題目】如圖,PQ∥MN,A、B分別為直線(xiàn)MN、PQ上兩點(diǎn),且∠BAN=45°,若射線(xiàn)AM繞點(diǎn)A順時(shí)針旋轉(zhuǎn)至AN后立即回轉(zhuǎn),射線(xiàn)BQ繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)至BP后立即回轉(zhuǎn),兩射線(xiàn)分別繞點(diǎn)A、點(diǎn)B不停地旋轉(zhuǎn),若射線(xiàn)AM轉(zhuǎn)動(dòng)的速度是a°/秒,射線(xiàn)BQ轉(zhuǎn)動(dòng)的速度是b°/秒,且a、b滿(mǎn)足|a﹣5|+(b﹣1)2=0.(友情提醒:鐘表指針走動(dòng)的方向?yàn)轫槙r(shí)針?lè)较颍?/span>
(1)a= ,b= ;
(2)若射線(xiàn)AM、射線(xiàn)BQ同時(shí)旋轉(zhuǎn),問(wèn)至少旋轉(zhuǎn)多少秒時(shí),射線(xiàn)AM、射線(xiàn)BQ互相垂直.
(3)若射線(xiàn)AM繞點(diǎn)A順時(shí)針先轉(zhuǎn)動(dòng)18秒,射線(xiàn)BQ才開(kāi)始繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),在射線(xiàn)BQ到達(dá)BA之前,問(wèn)射線(xiàn)AM再轉(zhuǎn)動(dòng)多少秒時(shí),射線(xiàn)AM、射線(xiàn)BQ互相平行?
【答案】(1)a=5,b=1;(2)t=15(s);(3)15,22.5.
【解析】
(1)依據(jù)|a﹣5|+(b﹣1)2=0,即可得到a,b的值;
(2)依據(jù)∠ABO+∠BAO=90°,∠ABQ+∠BAM=180°,即可得到射線(xiàn)AM、射線(xiàn)BQ第一次互相垂直的時(shí)間;
(3)分兩種情況討論,依據(jù)∠ABQ'=∠BAM“時(shí),BQ'∥AM“,列出方程即可得到射線(xiàn)AM、射線(xiàn)BQ互相平行時(shí)的時(shí)間.
解:(1)|a﹣5|+(b﹣1)2=0,
∴a﹣5=0,b﹣1=0,
∴a=5,b=1,
故答案為:5,1;
(2)設(shè)至少旋轉(zhuǎn)t秒時(shí),射線(xiàn)AM、射線(xiàn)BQ互相垂直.
如圖,設(shè)旋轉(zhuǎn)后的射線(xiàn)AM、射線(xiàn)BQ交于點(diǎn)O,則BO⊥AO,
∴∠ABO+∠BAO=90°,
∵PQ∥MN,
∴∠ABQ+∠BAM=180°,
∴∠OBQ+∠OAM=90°,
又∵∠OBQ=t°,∠OAM=5t°,
∴t°+5t°=90°,
∴t=15(s);
(3)設(shè)射線(xiàn)AM再轉(zhuǎn)動(dòng)t秒時(shí),射線(xiàn)AM、射線(xiàn)BQ互相平行.
如圖,射線(xiàn)AM繞點(diǎn)A順時(shí)針先轉(zhuǎn)動(dòng)18秒后,AM轉(zhuǎn)動(dòng)至AM'的位置,∠MAM'=18×5=90°,
分兩種情況:
①當(dāng)9<t<18時(shí),∠QBQ'=t°,∠M'AM“=5t°,
∵∠BAN=45°=∠ABQ,
∴∠ABQ'=45°﹣t°,∠BAM“=5t﹣45°,
當(dāng)∠ABQ'=∠BAM“時(shí),BQ'∥AM“,
此時(shí),45°﹣t°=5t﹣45°,
解得t=15;
②當(dāng)18<t<27時(shí),∠QBQ'=t°,∠NAM“=5t°﹣90°,
∵∠BAN=45°=∠ABQ,
∴∠ABQ'=45°﹣t°,∠BAM“=45°﹣(5t°﹣90°)=135°﹣5t°,
當(dāng)∠ABQ'=∠BAM“時(shí),BQ'∥AM“,
此時(shí),45°﹣t°=135°﹣5t,
解得t=22.5;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,頂點(diǎn)為P(4,-4)的二次函數(shù)圖象經(jīng)過(guò)原點(diǎn)(0,0),點(diǎn)A在該圖象上,OA交其對(duì)稱(chēng)軸l于點(diǎn)M,點(diǎn)M、N關(guān)于點(diǎn)P對(duì)稱(chēng),連接AN、ON.
(1)求該二次函數(shù)的關(guān)系式;
(2)若點(diǎn)A的坐標(biāo)是(6,-3),求△ANO的面積;
(3)當(dāng)點(diǎn)A在對(duì)稱(chēng)軸l右側(cè)的二次函數(shù)圖象上運(yùn)動(dòng)時(shí),請(qǐng)解答下面問(wèn)題:
①證明:∠ANM=∠ONM;
②△ANO能否為直角三角形?如果能,請(qǐng)求出所有符合條件的點(diǎn)A的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和”揭示了三角形的一個(gè)外角與它的兩個(gè)內(nèi)角之間的數(shù)量關(guān)系,請(qǐng)?zhí)剿鞑?xiě)出三角形沒(méi)有公共頂點(diǎn)的兩個(gè)外角與它的第三個(gè)內(nèi)角之間的關(guān)系:_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七(1)班體育委員統(tǒng)計(jì)了全班同學(xué)60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:
次數(shù) | 80≤x<100 | 100≤x<120 | 120≤x<140 | 140≤x<160 | 160≤x<180 | 180≤x<200 |
頻數(shù) | a | 4 | 12 | 16 | 8 | 3 |
結(jié)合圖表完成下列問(wèn)題:
(1)a= ,全班人數(shù)是______;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若跳繩次數(shù)不少于140的學(xué)生成績(jī)?yōu)閮?yōu)秀,則優(yōu)秀學(xué)生人數(shù)占全班總?cè)藬?shù)的百分之幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生對(duì)“垃圾分類(lèi)”知識(shí)的了解程度,某學(xué)校對(duì)本校學(xué)生進(jìn)行抽樣調(diào)查,并繪制統(tǒng)計(jì)圖,其中統(tǒng)計(jì)圖中沒(méi)有標(biāo)注相應(yīng)人數(shù)的百分比.請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)求“非常了解”的人數(shù)的百分比.
(2)已知該校共有1200名學(xué)生,請(qǐng)估計(jì)對(duì)“垃圾分類(lèi)”知識(shí)達(dá)到“非常了解”和“比較了解”程度的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y1=ax2+bx+c(a≠0)和一次函數(shù)y2=kx+n(k≠0)的圖象如圖所示,下面有四個(gè)推斷:
①二次函數(shù)y1有最大值;
②二次函數(shù)y1的圖象關(guān)于直線(xiàn)x=﹣1對(duì)稱(chēng)
③當(dāng)x=﹣2時(shí),二次函數(shù)y1的值大于0
④過(guò)動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線(xiàn)與y1,y2的圖象的交點(diǎn)分別為C,D,當(dāng)點(diǎn)C位于點(diǎn)D上方時(shí),m的取值范圍是m<﹣3或m>﹣1.
以上推斷正確的是( )
A. ①③ B. ①④ C. ②③ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,A(-2,1),B(-4,-2),C(-1,-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為(4,1)
(1)A′、B′兩點(diǎn)的坐標(biāo)分別為A′______,B′______;
(2)作出△ABC平移之后的圖形△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,AD=10.
(1)E是CD上的點(diǎn),將△ADE沿折痕AE折疊,使點(diǎn)D落在BC邊上點(diǎn)F處.求DE的長(zhǎng);
(2)點(diǎn)P是線(xiàn)段CB延長(zhǎng)線(xiàn)上的點(diǎn),連接PA,若△PAF是等腰三角形,求PB的長(zhǎng);
(3)M是AD上的動(dòng)點(diǎn),在DC上存在點(diǎn)N,使△MDN沿折痕MN折疊,點(diǎn)D落在BC邊上點(diǎn)T處,請(qǐng)直接寫(xiě)出線(xiàn)段CT長(zhǎng)度的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人分別騎自行車(chē)和摩托車(chē),從同一地點(diǎn)沿相同的路線(xiàn)前往距離80km的某地,圖中l1,l2分別表示甲、乙兩人離開(kāi)出發(fā)地的距離s(km)與行駛時(shí)間t(h)之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:
(1)甲、乙兩人誰(shuí)到達(dá)目的地較早?早多長(zhǎng)時(shí)間?
(2)分別求甲、乙兩人行駛過(guò)程中s與t的函數(shù)關(guān)系式;
(3)試確定當(dāng)兩輛車(chē)都在行駛途中(不包括出發(fā)地和目的地)時(shí),t的取值范圍;并在這一時(shí)間段內(nèi),求t為何值時(shí),摩托車(chē)行駛在自行車(chē)前面?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com