【題目】某校七(1)班體育委員統(tǒng)計了全班同學60秒跳繩的次數(shù),并繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖:

次數(shù)

80≤x<100

100≤x<120

120≤x<140

140≤x<160

160≤x<180

180≤x<200

頻數(shù)

a

4

12

16

8

3

結合圖表完成下列問題:

1a= ,全班人數(shù)是______;

2)補全頻數(shù)分布直方圖;

3)若跳繩次數(shù)不少于140的學生成績?yōu)閮?yōu)秀,則優(yōu)秀學生人數(shù)占全班總人數(shù)的百分之幾?

【答案】12, 45;(2)見解析;(3)優(yōu)秀學生人數(shù)占全班總人數(shù)的60%

【解析】

1)由頻數(shù)分布直方圖可直接得到a的值,把頻數(shù)相加,即可得出總人數(shù)

2)根據(jù)頻數(shù)統(tǒng)計表可知跳繩次數(shù)在140≤x<160之間的頻數(shù)為16,從而可補全直方圖;

3)用優(yōu)秀人數(shù)除以全班總人數(shù)即可.

(1)∵由頻數(shù)分別直方圖可知:第1小組頻數(shù)為2,

a=2.

總人數(shù)=2+4+12+16+8+3=45(人)

2)補全條形圖如圖所示:

3

故優(yōu)秀學生人數(shù)占全班總人數(shù)的60%

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的方程x2+(m+2)x+2m-1=0.

(1)求證方程有兩個不相等的實數(shù)根.

(2)當m為何值時,方程的兩根互為相反數(shù)?并求出此時方程的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某次考試中,某班級的數(shù)學成績統(tǒng)計圖如圖.下列說法錯誤的是(  )

A. 得分在70~80分之間的人數(shù)最多 B. 該班的總人數(shù)為40

C. 得分在90~100分之間的人數(shù)最少 D. 及格(≥60分)人數(shù)是26

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】敘述并證明三角形內(nèi)角和定理.

三角形內(nèi)角和定理: ;

已知:如圖ABC.

求證: .

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-2x-3.

1)求函數(shù)圖象的頂點坐標,與x軸和y軸的交點坐標,并畫出函數(shù)的大致圖象

2)根據(jù)圖象直接回答:當x滿足 時,y0;當-1x2時,y的范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=5AD=AE⊥BD,垂足是E,點F是點E關于AB的對稱點,連接AFBF

1)求AEBE的長;

2)若將△ABF沿著射線BD方向平移,設平移的距離為m(平移距離指點B沿BD方向所經(jīng)過的線段長度).當點F分別平移到線段AB、AD上時,直接寫出相應的m的值;

3)如圖,將△ABF繞點B順時針旋轉一個角α(<α<180°),記旋轉中的△ABF△A′BF′,在旋轉過程中,設A′F′所在的直線與直線AD交于點P,與直線BD交于點Q.是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時DQ的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PQMN,AB分別為直線MN、PQ上兩點,且∠BAN45°,若射線AM繞點A順時針旋轉至AN后立即回轉,射線BQ繞點B逆時針旋轉至BP后立即回轉,兩射線分別繞點A、點B不停地旋轉,若射線AM轉動的速度是a°/秒,射線BQ轉動的速度是b°/秒,且ab滿足|a5|+b120.(友情提醒:鐘表指針走動的方向為順時針方向)

1a   ,b   

2)若射線AM、射線BQ同時旋轉,問至少旋轉多少秒時,射線AM、射線BQ互相垂直.

3)若射線AM繞點A順時針先轉動18秒,射線BQ才開始繞點B逆時針旋轉,在射線BQ到達BA之前,問射線AM再轉動多少秒時,射線AM、射線BQ互相平行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學習小組在研究函數(shù)y=x3﹣2x的圖象與性質時,已列表、描點并畫出了圖象的一部分.

x

﹣4

﹣3.5

﹣3

﹣2

﹣1

0

1

2

3

3.5

4

y

0

(1)請補全函數(shù)圖象;

(2)方程x3﹣2x=﹣2實數(shù)根的個數(shù)為   ;

(3)觀察圖象,寫出該函數(shù)的兩條性質.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC在平面直角坐標系中的位置如圖所示.將ABC向右平移6個單位長度,再向下平移6個單位長度得到A1B1C1(圖中每個小方格邊長均為1個單位長度)

(1)在圖中畫出平移后的A1B1C1;

(2)直接寫出A1B1C1各頂點的坐標.

; ;

3)求出ABC的面積

查看答案和解析>>

同步練習冊答案