【題目】如圖,和都是等腰直角三角形,,的頂點(diǎn)與的斜邊的中點(diǎn)重合,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段與線段相交于點(diǎn),射線與線段相交于點(diǎn),與射線相交于點(diǎn).
(1)求證:;
(2)求證:平分;
(3)當(dāng),,求的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)5.
【解析】
(1)由△ABC和△DEF是兩個(gè)等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性質(zhì),即可得∠BEP=∠EQC,則可證得△BPE∽△CEQ;
(2)只要證明△BPE∽△EPQ,可得∠BEP=∠EQP,且∠BEP=∠CQE,可得結(jié)論;
(3)由相似三角形的性質(zhì)可求BE=3=EC,可求AP=4,AQ=3,即可求PQ的長(zhǎng).
解:(1)和是兩個(gè)等腰直角三角形,
,
,
即,
,
,
,
(2),
,
,
,
,
,
,且,
,
平分
(3)
,且,,
,
,
,
,
,,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長(zhǎng)CB、DA交于P,過(guò)C點(diǎn)作PD的垂線交PD的延長(zhǎng)線于E,且PB=BO,連接OA.
(1)求證:OA∥CD;
(2)求線段BC:DC的值;
(3)若CD=18,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線:(、、為常數(shù),且)與軸分別交于,兩點(diǎn),與軸交于點(diǎn).
(1)求拋物線的表達(dá)式;
(2)將平移后得到拋物線,點(diǎn)、在上(點(diǎn)在點(diǎn)的上方),若以點(diǎn)、、、為頂點(diǎn)的四邊形是正方形,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)P0的坐標(biāo)為(2,0),將點(diǎn)P0繞著原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得點(diǎn)P1,延長(zhǎng)OP1到點(diǎn)P2,使OP2=2OP1,再將點(diǎn)P2繞著原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得點(diǎn)P3,則點(diǎn)P3的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線,等腰直角三角形的三個(gè)頂點(diǎn)分別在,,上,90°,交于點(diǎn),已知與的距離為2,與的距離為3,則的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊銳角三角形卡紙余料ABC,它的邊BC=120cm,高AD=80cm,為使卡紙余料得到充分利用,現(xiàn)把它裁剪成一個(gè)鄰邊之比為2:5的矩形紙片EFGH和正方形紙片PMNQ,裁剪時(shí),矩形紙片的較長(zhǎng)邊在BC上,正方形紙片一邊在矩形紙片的較長(zhǎng)邊EH上,其余頂點(diǎn)均分別在AB,AC上,具體裁剪方式如圖所示。
(1)求矩形紙片較長(zhǎng)邊EH的長(zhǎng);
(2)裁剪正方形紙片時(shí),小聰同學(xué)是按以下方法進(jìn)行裁剪的:先沿著剩余料中與邊EH平行的中位線剪一刀,再沿過(guò)該中位線兩端點(diǎn)向邊EH所作的垂線剪兩刀,請(qǐng)你通過(guò)計(jì)算,判斷小聰?shù)募舴ㄊ欠裾_.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校調(diào)查了若干名家長(zhǎng)對(duì)“初中生帶手機(jī)上學(xué)”現(xiàn)象的看法,統(tǒng)計(jì)整理并制作了如下的條形與扇形統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,完成以下問(wèn)題:
(1)本次共調(diào)查了 名家長(zhǎng);扇形統(tǒng)計(jì)圖中“很贊同”所對(duì)應(yīng)的圓心角是 度.已知該校共有1600名家長(zhǎng),則“不贊同”的家長(zhǎng)約有 名;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)從“不贊同”的五位家長(zhǎng)中(兩女三男),隨機(jī)選取兩位家長(zhǎng)對(duì)全校家長(zhǎng)進(jìn)行“學(xué)生使用手機(jī)危害性”的專題講座,請(qǐng)用樹(shù)狀圖或列表法求出選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)是軸上一點(diǎn),其坐標(biāo)為,點(diǎn)在軸的正半軸上.點(diǎn),均在線段上,點(diǎn)的橫坐標(biāo)為,點(diǎn)的橫坐標(biāo)大于,在中,若軸,軸, 則稱為點(diǎn),的“肩三角形.
(1)若點(diǎn)坐標(biāo)為, 且,則點(diǎn),的“肩三角形”的面積為__ ;
(2)當(dāng)點(diǎn),的“肩三角形”是等腰三角形時(shí),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,作過(guò),,三點(diǎn)的拋物線.
①若點(diǎn)必為拋物線上一點(diǎn),求點(diǎn),的“肩三角形”面積與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
②當(dāng)點(diǎn),的“肩三角形”面積為3,且拋物線與點(diǎn),的“肩三角形”恰有兩個(gè)交點(diǎn)時(shí),直接寫(xiě)出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com