精英家教網 > 初中數學 > 題目詳情
如圖,已知拋物線y=mx2+(3-m)x+m2+m交x軸于C(x1,0),D(x2,0)兩點,(x1<x2)且(x1+1)(x2+1)=5
(1)試確定m的值;
(2)過點A(-1,-5)和拋物線的頂點M的直線交x軸于點B,求B點的坐標;
(3)設點P(a,b)是拋物線上點C到點M之間的一個動點(含C、M點),△POQ是以PO為腰、底邊OQ在x軸上的等腰三角形,過點Q作x軸的垂線交直線AM于點R,連接PR.設△PQR的面積為S,求S與a之間的函數關系式.

【答案】分析:(1)用m表示出二次函數兩個根的和、積,代入等式(x1+1)(x2+1)=5,并結合△=(3-m)2-4m(m2+m)>0,解出即可;
(2)由拋物線的解析式得出頂點坐標,又∵A(-1,-5),用待定系數法可求出直線的解析式,令y=0,即可求出x,得點B的坐標;
(3)點P(a,b),根據題意得,Q點坐標為(2a,0),由直線的解析式得,點R的坐標為(2a,6a-2),過點P作PN⊥RQ于點N,則RQ=|6a-2|,PN=|a|,所以,=,分類討論解答出即可.
解答:解:(1)因為拋物線y=mx2+(3-m)x+m2+m交x軸于C(x1,0),D(x2,0)兩點(x1<x2)且(x1+1)(x2+1)=5,
∴m≠0
,,且△=(3-m)2-4m(m2+m)>0,
又∵x1x2+x1+x2+1=5,

解得m=-1,或m=3,而m=3使△<0,不合題意,故舍去,
∴m=-1;

(2)由(1)知拋物線的解析式為y=-x2+4x,
∴頂點M的坐標為(2,4).如圖,
設直線AM的解析式為y=kx+b,
∵A(-1,-5),
則有,
解得,
∴y=3x-2,
當y=0時,
∴B點的坐標為(,0);

(3)依題意,點P(a,b)是拋物線上點C到點M之間的一個動點,
∴0<a≤2,
∴Q點坐標為(2a,0),
由(2)知直線AM為y=3x-2,
∴當x=2a時,y=6a-2,
∴點R的坐標為(2a,6a-2),
過點P作PN⊥RQ于點N,
∵RQ=|6a-2|,PN=|a|,
=,
時,=-3a2+a,
時,△PQR不存在;
時,=3a2-a.
點評:本題是二次函數的綜合題型,其中涉及到的知識點有拋物線的頂點公式、解析式和三角形的面積求法等;在求有關動點問題時要注意分析題意、分情況討論結果.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點,與y軸交于點精英家教網C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數解析式;
(3)在拋物線上,是否存在一點P,使△PAB的面積等于△ABC的面積,若存在,求出點P的坐標,若不存在,請說明理由.
(4)點Q是直線BC上的一個動點,若△QOB為等腰三角形,請寫出此時點Q的坐標.(可直接寫出結果)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(-1,0)精英家教網、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•衡陽)如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是x=-1.
(1)求拋物線對應的函數關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,且拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)點P是拋物線對稱軸上一點,若△PAB∽△OBC,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點是(-1,-4),且與x軸交于A、B(1,0)兩點,交y軸于點C;
(1)求此拋物線的解析式;
(2)①當x的取值范圍滿足條件
-2<x<0
-2<x<0
時,y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點,且y1>y2,求實數m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點M、交拋物線于點N,求線段MN的長度的最大值;
(4)若以拋物線上的點P為圓心作圓與x軸相切時,正好也與y軸相切,求點P的坐標.

查看答案和解析>>

同步練習冊答案