【題目】如圖,在平面直角坐標系中,已知點A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根長為2017個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在A處,并按A→B→C→D→A→…的規(guī)律緊繞在四邊形ABCD的邊上.則細線的另一端所在位置的點的坐標是

【答案】(1,﹣2)
【解析】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),

∴AB=CD=2,AD=BC=3,且四邊形ABCD為矩形,

∴矩形ABCD的周長C矩形ABCD=2(AB+BC)=10.

∵2017=201×10+7,AB+BC+CD=7,

∴細線的另一端落在點D上,即(1,﹣2).

故答案為(1,﹣2).

根據(jù)A,B,C,D的坐標可得出AB,BC的長度以及四邊形ABCD為矩形,進而可求出矩形ABCD的周長,根據(jù)細線的纏繞方向以及其長度可得出其另一端所在位置.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】哈市某花卉種植基地欲購進甲、乙兩種君子蘭進行培育,若購進甲種2株,乙種3株,則共需要成本1700元;若購進甲種3株,乙種1株,則共需要成本1500元.
(1)求甲乙兩種君子蘭每株成本分別為多少元?
(2)該種植基地決定在成本不超過30000元的前提下購進甲、乙兩種君子蘭,若購進乙種君子蘭的株數(shù)比甲種君子蘭的3倍還多10株,求最多購進甲種君子蘭多少株?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.

(1)探究:
①若∠A=30°,∠D=40°,則∠AED等于多少度?
②若∠A=20°,∠D=60°,則∠AED等于多少度?
③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關系,并證明你的結論.
(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了增強學生體質,全面實施“學生飲用奶”營養(yǎng)工程.某品牌牛奶供應商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學生飲用.浠馬中學為了了解學生對不同口味牛奶的喜好,對全校訂購牛奶的學生進行了隨機調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計圖:

(1)本次被調(diào)查的學生有名;
(2)補全上面的條形統(tǒng)計圖1,并計算出喜好“菠蘿味”牛奶的學生人數(shù)在扇形統(tǒng)計圖中所占圓心角的度數(shù);
(3)該校共有1200名學生訂購了該品牌的牛奶,牛奶供應商每天只為每名訂購牛奶的學生配送一盒牛奶.要使學生每天都喝到自己喜好的口味的牛奶,牛奶供應商每天送往該校的牛奶中,草莓味要比原味多送多少盒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進,2秒后到達點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達點H,此時他(GH)在同一燈光下的影長為BH(點C,E,G在一條直線上).

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

2)求小明原來的速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延長線于點E,CE=1,延長CE、BA交于點F.
(1)求證:△ADB≌△AFC;
(2)求BD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線(a≠0)經(jīng)過A(-1,0),B(2,0)兩點,與y軸交于點C

(1)求拋物線的解析式及頂點D的坐標;

(2)點P在拋物線的對稱軸上,△ACP的周長最小時,求出點P的坐標;

(3) 點N在拋物線上,點M在拋物線的對稱軸上,是否存在以點N為直角頂點的RtDNMRt△BOC相似,若存在,請求出所有符合條件的點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】遵義市某學校7位學生的中考體育測試成績(滿分40分)依次為3740,3937,40,38,40.則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是(  )

A. 40,37B. 40,39C. 3940D. 40,38

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結BF交AC于點M,連結DE、BO.若∠COB=60°,F(xiàn)O=FC,則下列結論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結論的個數(shù)是(

A.4個 B.3個 C.2個 D.1個

查看答案和解析>>

同步練習冊答案