【題目】如圖線段ABCD表示兩面鏡子,且直線AB∥直線CD,光線EF經(jīng)過鏡子AB反射到鏡予CD,最后反射到光線GH.光線反射時,∠1=2,∠3=4,下列結(jié)論:①直線EF平行于直線GH;②∠FGH的角平分線所在的直線垂直于直線AB;③∠BFE的角平分線所在的直線垂直于∠4的角平分線所在的直線;④當CD繞點G順時針旋轉(zhuǎn)90時,直線EF與直線GH不一定平行,其中正確的是(

A. ①②③④B. ①②③C. ②③D. ①③

【答案】B

【解析】

根據(jù)平行線的性質(zhì)定理逐個證明,看是否正確即可.

①正確,根據(jù)AB//CD,可得,再根據(jù)已知可得,進而證明,因此可得EF//GH;

②正確,根據(jù)∠3=4,可得∠FGH的角平分線所在的直線垂直于直線AB

③正確,因為①證明了 ,所以只要證明 的角平分線垂直于 的角平分線即可;

④不正確,因為,所以,即EF//GH.

故正確的有①②③,因此選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某農(nóng)戶為了發(fā)展養(yǎng)殖業(yè),準備利用一段墻墻長1855米長的竹籬笆圍成三個相連且面積相等的長方形雞、鴨、鵝各一個

1如果雞、鴨、鵝場總面積為1502,那么有幾種圍法?

2如果需要圍成的養(yǎng)殖場的面積盡可能大,那么又應怎樣圍,最大面積是多少

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為加強學生身體鍛煉,某校開展體育大課間活動,學校決定在學生中開設A:籃球,B:立定跳遠,C:跳繩,D:跑步,E:排球五種活動項目.為了了解學生對五種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖所示的兩個統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:

1)在這項調(diào)查中,共調(diào)查了_______名學生;

2)請將兩個統(tǒng)計圖補充完整;

3)若該校有1200名在校學生,請估計喜歡排球的學生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是一個菱形綠地,其周長為40 m,ABC120°,在其內(nèi)部有一個四邊形花壇EFGH,其四個頂點恰好在菱形ABCD各邊的中點,現(xiàn)在準備在花壇中種植茉莉花,其單價為10/m2,請問需投資金多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面魚角坐標系xOy中,A(﹣30),點By軸正半軸上一點,將線段AB繞點B旋轉(zhuǎn)90°至BC處,過點CCD垂直x軸于點D,若四邊形ABCD的面積為36,則線AC的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車分別從甲地開往乙地轎車的平均速度大于貨車的平均速度,如圖,線段OA、折線BCD分別表示兩車離甲地的距離單位:千米與時間單位:小時之間的函數(shù)關(guān)系.

線段OA與折線BCD中,______表示貨車離甲地的距離y與時間x之間的函數(shù)關(guān)系.

求線段CD的函數(shù)關(guān)系式;

貨車出發(fā)多長時間兩車相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道上某一觀測點M處,測得亭A在點M的北偏東30°方向, B在點M的北偏東60°方向,當小明由點M沿小道向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小明計算湖中兩個小亭A、B之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.

(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.

①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BPDCQP是否全等,請說明理由;

②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPDCQP全等?

(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在ABC的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿CD運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿AB運動,連接PQ、CB,設點P運動的時間為t秒.

(1)求a的值;(2)當四邊形ODPQ為矩形時,求這個矩形的面積;(3)當四邊形PQBC的面積等于14時,求t的值.(4)當t為何值時,PBQ是等腰三角形?(直接寫出答案)

查看答案和解析>>

同步練習冊答案