(2009•襄陽)如圖,在平行四邊形ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x-3=0的根,則平行四邊形ABCD的周長為( )

A.4+2
B.12+6
C.2+2
D.2+2或12+6
【答案】分析:利用已知條件和平行四邊形的性質(zhì)及勾股定理,即可求解.
解答:解:∵平行四邊形ABCD
∴AD∥BC,
∵AE⊥BC于E,
∵AE=EB=EC=a,
∴△AEB是等腰直角三角形,由勾股定理得:AB2=AE2+BE2,即AB=a,BC=BE+CE=2a,
∴平行四邊形ABCD的周長=2(AB+BC)=2a(2+),
∵a是一元二次方程x2+2x-3=0的根,解此方程得x=-3或x=1,顯然x=-3,不合題意,x=1,
∴x=a=1,
∴平行四邊形ABCD的周長=2(AB+BC)=2a(2+)=2(2+)=4+2
故選A.
點評:本題要求我們能根據(jù)所給的條件與圖形,觀察出△BAE的特殊性,綜合運用平行四邊形的性質(zhì),勾股定理求得平行四邊形的周長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(05)(解析版) 題型:解答題

(2009•襄陽)如圖所示,在直角坐標(biāo)系中,點A是反比例函數(shù)y1=的圖象上一點,AB⊥x軸的正半軸于B點,C是OB的中點;一次函數(shù)y2=ax+b的圖象經(jīng)過A、C兩點,并將y軸于點D(0,-2),若S△AOD=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,請指出在y軸的右側(cè),當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市十三中中考數(shù)學(xué)模擬試卷(3月份)(解析版) 題型:解答題

(2009•襄陽)如圖所示,在直角坐標(biāo)系中,點A是反比例函數(shù)y1=的圖象上一點,AB⊥x軸的正半軸于B點,C是OB的中點;一次函數(shù)y2=ax+b的圖象經(jīng)過A、C兩點,并將y軸于點D(0,-2),若S△AOD=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,請指出在y軸的右側(cè),當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省襄樊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•襄陽)如圖所示,在直角坐標(biāo)系中,點A是反比例函數(shù)y1=的圖象上一點,AB⊥x軸的正半軸于B點,C是OB的中點;一次函數(shù)y2=ax+b的圖象經(jīng)過A、C兩點,并將y軸于點D(0,-2),若S△AOD=4.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,請指出在y軸的右側(cè),當(dāng)y1>y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南省邵陽市邵東縣省示范高中自主招生數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•襄陽)如圖,在梯形ABCD中,AD∥BC,AD=2,BC=4,點M是AD的中點,△MBC是等邊三角形.
(1)求證:梯形ABCD是等腰梯形;
(2)動點P、Q分別在線段BC和MC上運動,且∠MPQ=60°保持不變.設(shè)PC=x,MQ=y,求y與x的函數(shù)關(guān)系式;
(3)在(2)中:
①當(dāng)動點P、Q運動到何處時,以點P、M和點A、B、C、D中的兩個點為頂點的四邊形是平行四邊形?并指出符合條件的平行四邊形的個數(shù);
②當(dāng)y取最小值時,判斷△PQC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省襄樊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•襄陽)如圖所示,在Rt△ABC中,∠ABC=90度.將Rt△ABC繞點C順時針方向旋轉(zhuǎn)60°得到△DEC,點E在AC上,再將Rt△ABC沿著AB所在直線翻轉(zhuǎn)180°得到△ABF.連接AD.
(1)求證:四邊形AFCD是菱形;
(2)連接BE并延長交AD于G,連接CG,請問:四邊形ABCG是什么特殊平行四邊形,為什么?

查看答案和解析>>

同步練習(xí)冊答案