【題目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF
(1)如圖1,當點D在線段BC上時.求證CF+CD=BC;
(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;
(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F分別在直線BC的兩側,其他條件不變;
①請直接寫出CF,BC,CD三條線段之間的關系;
②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.
【答案】(1)證明見解析;(2)CF﹣CD=BC;(3)①CD﹣CF=BC;②2.
【解析】
(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得.
(2)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC.
(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CB=CF.
②證明△BAD≌△CAF,△FCD是直角三角形,然后根據(jù)正方形的性質即可求得DF的長,則OC即可求得.
解:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.
∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.
∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF.
∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,
∴△BAD≌△CAF(SAS).∴BD=CF.
∵BD+CD=BC,∴CF+CD=BC.
(2)CF-CD=BC;
理由:∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS)
∴BD=CF
∴BC+CD=CF,
∴CF-CD=BC;
(3)①∵∠BAC=90°,∠ABC=45°,
∴∠ACB=∠ABC=45°,
∴AB=AC,
∵四邊形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,
∴∠BAD=∠CAF,
∵在△BAD和△CAF中,,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∴CD-BC=CF,
②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°.∴AB=AC.
∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°.
∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF.
∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,
∴△BAD≌△CAF(SAS).∴∠ACF=∠ABD.
∵∠ABC=45°,∴∠ABD=135°.∴∠ACF=∠ABD=135°.∴∠FCD=90°.
∴△FCD是直角三角形.
∵正方形ADEF的邊長為且對角線AE、DF相交于點O,
∴DF=AD=4,O為DF中點.
∴OC=DF=2.
科目:初中數(shù)學 來源: 題型:
【題目】 某校為加強學生安全意識,組織了全校1500名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分100分)進行統(tǒng)計,請根據(jù)尚為完成的頻率和頻數(shù)分布直方圖,解答下列問題:
分數(shù)段 | 頻數(shù) | 頻率 |
50.5~60.5 | 16 | 0.08 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 50 | 0.25 |
80.5~90.5 | m | 0.35 |
90.5~100.5 | 24 | n |
(1)這次抽取了______名學生的競賽成績進行統(tǒng)計,其中m=______,n=______;
(2)補全頻數(shù)分布直方圖;
(3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把兩個全等的等腰直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點G與三角板ABC的斜邊中點O重合.現(xiàn)將三角板EFG繞O點順時針方向旋轉(旋轉角α滿足條件:0°<α<90°),四邊形CHGK是旋轉過程中兩三角板的重疊部分,已知AC=4.在旋轉過程中,下列結論:①BH=CK;②四邊形CHGK的面積等于4;③GK長度的最大值為2;④線段KH的長度最小值為2.其中正確的有( 。﹤
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的邊長為4,頂點A,C分別在x軸、y軸的正半軸上,拋物線y=-x2+bx+c經(jīng)過點B,C兩點,點D為拋物線的頂點,連接AC,BD,CD.
(1)求此拋物線的解析式;
(2)求此拋物線頂點D的坐標和四邊形ABDC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BD是四邊形ABCD的對角線,AD=BC,AD∥BC,∠ABD=∠DBC,DE⊥AB于E.
(1)求證:CD=CB;
(2)若AB=5,BD=6,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AB=10.點Q與點B在AC的同側,且AQ⊥AC.
(1)如圖1,點Q不與點A重合,連結CQ交AB于點P.設AQ=x,AP=y,求y關于x的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)是否存在點Q,使△PAQ與△ABC相似,若存在,求AQ的長;若不存在,請說明理由;
(3)如圖2,過點B作BD⊥AQ,垂足為D.將以點Q為圓心,QD為半徑的圓記為⊙Q.若點C到⊙Q上點的距離的最小值為8,求⊙Q的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點是內任意一點,且,點和點分別是射線和射線上的動點,當周長取最小值時,則的度數(shù)為( )
A.145°B.110°C.100°D.70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=50°,CE為△ABC的角平分線,AC邊上的高BD與CE所在的直線交于點F,若∠ABD:∠ACF=3:5,則∠BEC的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD中,∠ADC=120°,ADAB,E、F分別是AB、CD的中點,過點A作AG∥BD,交CB的延長線于點G.
(1)求證:DE=BE;
(2)請判斷四邊形AGBD是什么特殊的四邊形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com