已知,拋物線y=ax2+bx+c的部分圖象如圖,則下列說(shuō)法:①對(duì)稱(chēng)軸是直線x=1;②當(dāng)-1<x<3時(shí),y<0;③a+b+c=-4;④方程ax2+bx+c+5=0無(wú)實(shí)數(shù)根,其中正確的有________.

①②③④
分析:觀察函數(shù)圖象易得拋物線的對(duì)稱(chēng)軸為直線x=1,拋物線與x軸的一個(gè)交點(diǎn)坐標(biāo)為(-1,0),當(dāng)x=1時(shí),y有最小值-4,然后利用對(duì)稱(chēng)性可得到拋物線與x軸的另一交點(diǎn)坐標(biāo)為(3,0),觀察圖象得到當(dāng)-1<x<3時(shí),對(duì)應(yīng)的拋物線在x軸下方,即y<0;把x=1代入解析式即可得到a+b+c=-4;由于ax2+bx+c的最小值為-4,則ax2+bx+c≠-5,得到方程ax2+bx+c+5=0無(wú)實(shí)數(shù)根.
解答:觀察圖象可得拋物線的對(duì)稱(chēng)軸為直線x=1,所以①正確;
點(diǎn)(-1,0)關(guān)于直線x=1的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為(3,0),即拋物線與x軸的交點(diǎn)坐標(biāo)為(-1,0)和(3,0),則當(dāng)-1<x<3時(shí),y<0,所以②正確;
當(dāng)x=1時(shí),y有最小值-4,則a+b+c=-4,所以③正確;
ax2+bx+c的最小值為-4,則ax2+bx+c不可能等于-5,即方程ax2+bx+c+5=0無(wú)實(shí)數(shù)根,所以④正確.
故答案為①②③④.
點(diǎn)評(píng):本題考查了二次函數(shù)y=ax2+bx+c的圖象與系數(shù)的關(guān)系:當(dāng)a>0,拋物線開(kāi)口向上,函數(shù)有最小值;拋物線的對(duì)稱(chēng)軸為直線x=-,頂點(diǎn)坐標(biāo)為(-,).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對(duì)邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對(duì)稱(chēng)軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為
3
,拋物線與x軸交于點(diǎn)P、Q,問(wèn)是否精英家教網(wǎng)存在過(guò)P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)點(diǎn)(1,0),一條直線y=ax+b,它們的系數(shù)之間滿(mǎn)足如下關(guān)系:a>b>c.
(1)求證:拋物線與直線一定有兩個(gè)不同的交點(diǎn);
(2)設(shè)拋物線與直線的兩個(gè)交點(diǎn)為A、B,過(guò)A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問(wèn):是否存在實(shí)數(shù)k,使線段A1B1的長(zhǎng)為4
2
.如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•貴陽(yáng))已知:直線y=ax+b過(guò)拋物線y=-x2-2x+3的頂點(diǎn)P,如圖所示.
(1)頂點(diǎn)P的坐標(biāo)是
(-1,4)
(-1,4)
;
(2)若直線y=ax+b經(jīng)過(guò)另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對(duì)稱(chēng),求直線y=mx+n與拋物線y=-x2-2x+3的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:拋物線數(shù)學(xué)公式,其中a、b、c是△ABC的∠A、∠B、∠C的對(duì)邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對(duì)稱(chēng)軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為數(shù)學(xué)公式,拋物線與x軸交于點(diǎn)P、Q,問(wèn)是否存在過(guò)P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年四川省綿陽(yáng)市南山中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對(duì)邊.
(1)求證:拋物線與x軸必有兩個(gè)不同交點(diǎn);
(2)設(shè)直線y=ax-bc與拋物線交于E、F兩點(diǎn),與y軸交于點(diǎn)M,拋物線與y軸交于點(diǎn)N,若拋物線的對(duì)稱(chēng)軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設(shè)△ABC的面積為,拋物線與x軸交于點(diǎn)P、Q,問(wèn)是否存在過(guò)P、Q兩點(diǎn)且與y軸相切的圓?若存在,求出圓的圓心坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案