【題目】如圖,已知一張長方形紙片,,().將這張紙片沿著過點(diǎn)的折痕翻折,使點(diǎn)落在邊上的點(diǎn),折痕交 于點(diǎn),將折疊后的紙片再次沿著另一條過點(diǎn)的折痕翻折,點(diǎn)恰好與點(diǎn)重合,此時(shí)折痕交于點(diǎn).
(1)在圖中確定點(diǎn)、點(diǎn)和點(diǎn)的位置;
(2)聯(lián)結(jié), 則等于多少°;
(3)用含有、的代數(shù)式表示線段的長.
【答案】(1)點(diǎn)F、點(diǎn)E和點(diǎn)G的位置如圖所示;見解析;(2)45;(3).
【解析】
依題意先畫出圖形,再利用折疊的性質(zhì)來得出等量關(guān)系,依次求解.
(1)點(diǎn)F、點(diǎn)E和點(diǎn)G的位置如圖所示;
(2)由折疊的性質(zhì)得:∠DAE=∠EAB,
∵四邊形ABCD是矩形,
∴∠BAD=∠DAE+∠EAB=90°,
∴∠EAB=45°;
(3)由折疊的性質(zhì)得:DG=EG,
∵∠ABE=90°,∠EAB=45°,
∴∠AEB=45°,
∴BE=AB=a,
∴CE=b-a,
設(shè)CG=x,則DG=EG=a-x,
在Rt△CEG中,CG2+CE2=EG2,
即x2+(b-a)2=(a-x)2,
解得:x=,
∴DG=a-x=a-=a-b+.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,A(m,0),B(0,n),且m,n滿足(m﹣2)20.
(1)求S△ABO;
(2)點(diǎn)C為y軸負(fù)半軸上一點(diǎn),BD⊥CA交CA的延長線于點(diǎn)D,若∠BAD=∠CAO,求的值;
(3)點(diǎn)E為y軸負(fù)半軸上一點(diǎn),OH⊥AE于H,HO,AB的延長線交于點(diǎn)F,G為y軸正半軸上一點(diǎn),且BG=OE,FG,EA的延長線交于點(diǎn)P,求證:點(diǎn)P的縱坐標(biāo)是定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:直線l:y=﹣x,點(diǎn)A1的坐標(biāo)為(﹣1,0),過點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1 , 以原點(diǎn)O為圓心,OB1長為半徑畫弧交x軸負(fù)半軸于點(diǎn)A2 , 再過點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2 , 以原點(diǎn)O為圓心,OB2長為半徑畫弧交x軸負(fù)半軸于點(diǎn)A3…按此作法進(jìn)行去,點(diǎn)A2016的坐標(biāo)為( )
A.(﹣22016 , 0)
B.(﹣22017 , 0)
C.(﹣21008 , 0)
D.(﹣21007 , 0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)y= (k≠0,且k為常數(shù))的圖象過點(diǎn)E,且S△AOE=3S△OBE .
(1)求k的值;
(2)反比例函數(shù)圖象與線段BC交于點(diǎn)D,直線y= x+b過點(diǎn)D與線段AB交于點(diǎn)F,延長OF交反比例函數(shù)y= (x<0)的圖象于點(diǎn)N,求N點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長為 1,CD⊥AB 于點(diǎn) D,E 為射線 CD 上一點(diǎn),以BE為邊在 BE 左側(cè)作等邊△BEF,則DF的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)x、y滿足2x+3y=1.
(1)用含有x的代數(shù)式表示y;
(2)若實(shí)數(shù)y滿足y>1,求x的取值范圍;
(3)若實(shí)數(shù)x、y滿足x>﹣1,y≥﹣,且2x﹣3y=k,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD與角平分線AE相交點(diǎn)F,過點(diǎn)C作CH⊥AE于G,交AB于H.下列說法:①∠BCH=∠CAE;②DF=EF;③CE=BH;④S△ABE=2S△ACE;⑤CF=DF.正確的是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com