【題目】如圖,點(diǎn)D,E分別在正△ABC的邊AB,BC上,且BD=CE,CD,AE交于點(diǎn)F.
(1)①求證:△ACE≌△CBD;②求∠AFD的度數(shù);
(2)如圖2,若D,E,M,N分別是△ABC各邊上的三等分點(diǎn),BM,CD交于Q.若△ABC的面積為S,請(qǐng)用S表示四邊形ANQF的面積 ;
(3)如圖3,延長(zhǎng)CD到點(diǎn)P,使∠BPD=30°,設(shè)AF=a,CF=b,請(qǐng)用含a,b的式子表示PC長(zhǎng),并說(shuō)明理由.
【答案】(1)①見(jiàn)解析,②∠AFD=60°(2)S;(3)PC=a+2b,見(jiàn)解析
【解析】
(1)①由等邊三角形的性質(zhì)AB=AC=BC,∠ABC=∠ACE=∠BAC=60°,且BD=CE,可證△BDC≌△CEA;
②由三角形的外角性質(zhì)可求∠AFD的度數(shù);
(2)由等邊三角形的性質(zhì)可得BD=CE=AM=DN,且AB=AC=BC,∠ABC=∠ACE=∠BAC=60°,可證△ABM≌△CAE≌△BCD和△BDQ≌△CEF,由全等三角形的性質(zhì)和三等分點(diǎn)性質(zhì),可求四邊形ANQF的面積;
(3)在AC上截取AM=CE,由題意可證△BHC≌△CFA,可得BH=CF=b,AF=CH=a,∠PHB=60°,即可求PC的長(zhǎng).
證明:(1)①∵△ABC是等邊三角形,
∴AB=AC=BC,∠ABC=∠ACE=∠BAC=60°,且BD=CE,
∴△BDC≌△CEA(SAS);
②∵△BDC≌△CEA,
∴∠CAE=∠BCD,
∵∠AFD=∠CAE+∠ACF=∠BCD+∠ACD=∠ACB,
∴∠AFD=60°;
(2)∵D,E,M,N分別是△ABC各邊上的三等分點(diǎn),
∴BD=CE=AM=DN,且AB=AC=BC,∠ABC=∠ACE=∠BAC=60°,
∴△ABM≌△CAE≌△BCD(SAS),
∴∠CAE=∠ABM=∠BCD,∠AMB=∠AEC=∠BDC,且BD=CE,
∴△BDQ≌△CEF(ASA),
∴S△BDQ=S△CEF,
∵BD=DN,
∴S△BDQ=S△DNQ=S△CEF,
∵D,E是AB,BC上三等分點(diǎn),
∴S△BDC=S△CEA=S△ABC=S,
∵四邊形ANQF的面積=S△ABC﹣S△AEC﹣S△DNQ﹣S四邊形DFEB=S﹣S﹣S,
∴四邊形ANQF的面積=S,
故答案為:S;
(3)PC=a+2b,
理由如下:如圖,在AC上截取AM=CE,即AM=CE=BD,
∵AM=CE=BD,∠ABC=∠BAC=∠ACB=60°,AB=AC=CB,
∴△CBD≌△ACE≌△BAM(SAS),
∴∠CAE=∠BCD=∠ABM,且∠ABC=∠ACE,
∴∠MBC=∠ACD,且BC=AC,∠EAC=∠BCD,
∴△BHC≌△CFA(ASA),
∴BH=CF=b,AF=CH=a,
∵∠PHB=∠MBH+∠HCB=∠ABM+∠MBC=∠ABC,
∴∠PHB=60°,且∠BPD=30°,
∴∠PBH=90°,且∠BPH=30°,
∴PH=2BH=2b,
∴PC=PH+HC=a+2b.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB = AC,點(diǎn)D是邊BC的中點(diǎn),過(guò)點(diǎn)A、D分別作BC與AB的平行線,相交于點(diǎn)E,連結(jié)EC、AD.
求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】感知:如圖1,在中,D、E分別是AB、AC兩邊的中點(diǎn),延長(zhǎng)DE至點(diǎn)F,使,連結(jié)易知≌.
探究:如圖2,AD是的中線,BE交AC于點(diǎn)E,交AD于點(diǎn)F,且,求證:.
應(yīng)用:如圖3,在中,,,,DE是的中位線過(guò)點(diǎn)D、E作,分別交邊BC于點(diǎn)F、G,過(guò)點(diǎn)A作,分別與FD、GE的延長(zhǎng)線交于點(diǎn)M、N,則四邊形MFGN周長(zhǎng)C的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,,
(1)畫出關(guān)于軸的對(duì)稱圖形,畫出向左平移3個(gè)單位長(zhǎng)度后得到的,
(2)如果上有一點(diǎn)經(jīng)過(guò)上述兩次變換,那么對(duì)應(yīng)上的點(diǎn)的坐標(biāo)是______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊上有一點(diǎn)(點(diǎn)不與點(diǎn)、點(diǎn)重合),過(guò)點(diǎn)作直線截,使截得的三角形與相似,滿足條件的直線共有( )
A. 2條 B. 3條 C. 4條 D. 5條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)過(guò)點(diǎn)和對(duì)于該二次函數(shù)有如下說(shuō)法:
①它的圖象與軸有兩個(gè)公共點(diǎn);
②若存在一個(gè)正數(shù),使得當(dāng)時(shí),函數(shù)值隨的增大而減小,則;若存在一個(gè)負(fù)數(shù),使得當(dāng)時(shí),函數(shù)值隨的增大而增大,則;
③若將它的圖象向左平移個(gè)單位后過(guò)原點(diǎn),則;
④若當(dāng)時(shí)的函數(shù)值與時(shí)的函數(shù)值相等,則當(dāng)時(shí)的函數(shù)值為.
其中正確的說(shuō)法的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC位于第二象限,點(diǎn)A的坐標(biāo)是(﹣2,3),先把△ABC向右平移4個(gè)單位長(zhǎng)度得到△A1B1C1,再作與△A1B1C1關(guān)于x軸對(duì)稱的△A2B2C2 .
(1)在圖中畫出△A1B1C1和△A2B2C2 ;
(2)點(diǎn)A2的坐標(biāo)為 ;
(3)求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的方程(x-3)(x-5)=m(m>0)有兩個(gè)實(shí)數(shù)根,( < ),則下列選項(xiàng)正確的是( )
A. 3<<<5 B. 3<<5< C. <2< <5 D. <3且 >5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com