【題目】如圖,已知∠AOB=a外有一點(diǎn)P,畫(huà)點(diǎn)P關(guān)于直線(xiàn)OA的對(duì)稱(chēng)點(diǎn)P′,再作點(diǎn)P′關(guān)于直線(xiàn)OB的對(duì)稱(chēng)點(diǎn)P″.

(1)試猜想∠POP″a的大小關(guān)系,并說(shuō)出你的理由.

(2)當(dāng)P為∠AOB 內(nèi)一點(diǎn)或∠AOB邊上一點(diǎn)時(shí),上述結(jié)論是否成立?

【答案】(1)POP″=2α (2)成立

【解析】

(1)根據(jù)軸對(duì)稱(chēng)的性質(zhì)畫(huà)出圖形,再由直角三角形全等的判定定理得出DOP′≌△DOP,EOP″≌△EOP′,根據(jù)全等三角形的性質(zhì)即可得出結(jié)論

(2)根據(jù)題意畫(huà)出圖形,同(1)可得出結(jié)論

(1)猜想:∠POP″=2α.

理由:如圖1,在DOP′DOP

,

∴△DOP′≌△DOP.

同理可得,EOP″≌△EOP′

∴∠POP″=2α;

(2)成立.

如圖2,當(dāng)點(diǎn)P在∠AOB內(nèi)時(shí),

∵同(1)可得,

DOP′≌△DOP,EOP″≌△EOP′,

∴∠POD=P′OD,EOP″=EOP′,

∴∠POP″=P′OP″﹣POP′=3α﹣α=2α.

如圖3,當(dāng)點(diǎn)P在∠AOB的邊上時(shí),

∵同(1)可得EOP″≌△EOP,

∴∠POP″=2α.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解家長(zhǎng)關(guān)注孩子成長(zhǎng)方面的狀況,學(xué)校開(kāi)展了針對(duì)學(xué)生家長(zhǎng)的“您最關(guān)心孩子哪方面成長(zhǎng)”的主題調(diào)查,調(diào)查設(shè)置了“健康安全”、“日常學(xué)習(xí)”、“習(xí)慣養(yǎng)成”、“情感品質(zhì)”四個(gè)項(xiàng)目,并隨機(jī)抽取甲、乙兩班共100位學(xué)生家長(zhǎng)進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果,繪制了如圖不完整的條形統(tǒng)計(jì)圖.
(1)補(bǔ)全條形統(tǒng)計(jì)圖.
(2)若全校共有3600位學(xué)生家長(zhǎng),據(jù)此估計(jì),有多少位家長(zhǎng)最關(guān)心孩子“情感品質(zhì)”方面的成長(zhǎng)?
(3)綜合以上主題調(diào)查結(jié)果,結(jié)合自身現(xiàn)狀,你更希望得到以上四個(gè)項(xiàng)目中哪方面的關(guān)注和指導(dǎo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,需在一面墻上繪制幾個(gè)相同的拋物線(xiàn)型圖案.按照?qǐng)D中的直角坐標(biāo)系,最左邊的拋物線(xiàn)可以用y=ax2+bx(a≠0)表示.已知拋物線(xiàn)上B,C兩點(diǎn)到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線(xiàn)的函數(shù)關(guān)系式,并求圖案最高點(diǎn)到地面的距離;
(2)若該墻的長(zhǎng)度為10m,則最多可以連續(xù)繪制幾個(gè)這樣的拋物線(xiàn)型圖案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)分別為2和4的兩個(gè)全等三角形,開(kāi)始它們?cè)谧筮呏丿B,大△ABC固定不動(dòng),然后把小△A′B′C′自左向右平移,直至移到點(diǎn)B′到C重合時(shí)停止,設(shè)小三角形移動(dòng)的距離為x,兩個(gè)三角形的重合部分的面積為y,則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊ABC的邊長(zhǎng)為a,B,Cx軸上,Ay軸上.

(1)作ABC關(guān)于x軸的對(duì)稱(chēng)圖形A′B′C′;

(2)求ABC各頂點(diǎn)坐標(biāo)和A′B′C′各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,操場(chǎng)上有一根旗桿AH,為測(cè)量它的高度,在B和D處各立一根高1.5米的標(biāo)桿BC、DE,兩桿相距30米,測(cè)得視線(xiàn)AC與地面的交點(diǎn)為F,視線(xiàn)AE與地面的交點(diǎn)為G,并且H、B、F、D、G都在同一直線(xiàn)上,測(cè)得BF為3米,DG為5米,求旗桿AH的高度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的3個(gè)頂點(diǎn)都在5×5的網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)的格點(diǎn)上,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到△A′BC′的位置,且點(diǎn)A′、C′仍落在格點(diǎn)上,則線(xiàn)段AB掃過(guò)的圖形面積是平方單位(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AD是∠BAC的平分線(xiàn),E、F分別為AB、AC上的點(diǎn),且∠EDF+EAF=180°,求證DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)過(guò)程中,對(duì)教材中的一個(gè)有趣問(wèn)題做如下探究:

(習(xí)題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線(xiàn),CD是高,AE、CD相交于點(diǎn)F.求證:∠CFE=CEF;

(變式思考)如圖2,在△ABC中,∠ACB=90°,CDAB邊上的高,若△ABC的外角∠BAG的平分線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)F,其反向延長(zhǎng)線(xiàn)與BC邊的延長(zhǎng)線(xiàn)交于點(diǎn)E,則∠CFE與∠CEF還相等嗎?說(shuō)明理由;

(探究廷伸)如圖3,在△ABC中,在AB上存在一點(diǎn)D,使得∠ACD=B,角平分線(xiàn)AECD于點(diǎn)F.ABC的外角∠BAG的平分線(xiàn)所在直線(xiàn)MNBC的延長(zhǎng)線(xiàn)交于點(diǎn)M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案