如圖是某居民小區(qū)的一塊直角三角形空地ABC,某斜邊AB=100米,直角邊AC=80米.現(xiàn)要利用這塊空地建一個(gè)矩形停車(chē)場(chǎng)DCFE,使得D點(diǎn)在BC邊上,E、F分別是AB、AC邊的中點(diǎn).
(1)求另一條直角邊BC的長(zhǎng)度;
(2)求停車(chē)場(chǎng)DCFE的面積;
(3)為了提高空地利用律,現(xiàn)要在剩余的△BDE中,建一個(gè)半圓形的花壇,使它的圓心在BE邊上,且使花壇的面積達(dá)到最大,請(qǐng)你在原圖中畫(huà)出花壇的草圖,求出它的半徑(不要求說(shuō)明面積最大的理由),并求此時(shí)直角三角形空地ABC的總利用率是百分之幾(精確到1%).
(1)由勾股定理得BC=
AB2-AC2
=
1002-802
=60(米),
∴另一條直角邊BC的長(zhǎng)為60米.

(2)由已知可得EF為△ABC的中位線,
∴EF=
1
2
BC=
1
2
×60=30(米),
又FC=
1
2
AC=
1
2
×80=40(米),
∴S矩形DCFE=EF•FC=30×40=1200(米2).

(3)如圖,當(dāng)花壇的面積達(dá)到最大時(shí),半圓O與BD、DE相切,
設(shè)切點(diǎn)分別為G、K,圓心為O,
連接OG、OK,則OG⊥BD,OK⊥DE,OG=OK,
又∵∠BDE=90°,
∴四邊形OGDK為正方形.
設(shè)OG=x,
∵BD=BC-CD=60-30=30,
∴BG=BD-GD=30-x.
∵∠OGB=∠C=90°,∠B=∠B,
∴△OBG△ABC,
OG
BG
=
AC
BC

x
30-x
=
80
60
=
4
3
,解得x=
120
7

∴當(dāng)花壇的面積達(dá)到最大時(shí),其半徑為
120
7
米.
∴直角三角形空地ABC的總利用率=[
1
2
π(
120
7
2+1200]÷(
1
2
×80×60)≈69%.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知線段AB=5cm,點(diǎn)C是以4cm長(zhǎng)為半徑的⊙A上的一個(gè)動(dòng)點(diǎn),分別連接BC、AC,若△ABC是直角三角形,則線段BC的長(zhǎng)度為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在一塊平地上,張大爺家屋前9m遠(yuǎn)處有一棵大樹(shù).在一次強(qiáng)風(fēng)中,這棵大樹(shù)從離地面6m處折斷倒下,量得倒下部分的長(zhǎng)是10m.出門(mén)在外的張大爺擔(dān)心自己的房子被倒下的大樹(shù)砸到.大樹(shù)倒下時(shí)能砸到張大爺?shù)姆孔訂??qǐng)你通過(guò)計(jì)算、分析后給出正確的回答:______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

從下面兩個(gè)題目中任選一題作答:
(A題)折竹抵地
今有竹高一丈,末折抵地,去本三尺.問(wèn)折者高幾何(如圖)
友情提醒:請(qǐng)寫(xiě)出解答這首詩(shī)的方法和步驟.
(B題)海島算經(jīng)
三國(guó)魏人劉徽,自撰《海島算經(jīng)》,專(zhuān)論測(cè)高望遠(yuǎn).其中有一題,是數(shù)學(xué)史上有名的測(cè)量問(wèn)題.今譯如下:如圖,要測(cè)量海島上一座山峰A的高度AH,立兩根高三丈的標(biāo)桿BC和DE,兩竿相距BD=1000步,D、B、H成一線,從BC退行123步到F,人目著地觀察A,A、C、F三點(diǎn)共線;從DE退行127步到G,從G看A,A、E、G三點(diǎn)也共線.試算出山峰的高度AH及HB的距離.(古制1步=6尺,1里=180丈=1800尺=300步.結(jié)果用里和步來(lái)表示)
友情提醒:請(qǐng)寫(xiě)出必要的算法和過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有兩棵樹(shù),一棵高6米,另一棵高2米,兩樹(shù)相距8米,一只小鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,至少飛______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明學(xué)了勾股定理后很高興,興沖沖的回家告訴了爸爸:在△ABC中,若∠C=90°,BC=a,AC=b,AB=c,如下圖,根據(jù)勾股定理,則a2+b2=c2.爸爸笑瞇瞇地聽(tīng)完后說(shuō):很好,你又掌握了一樣知識(shí),現(xiàn)在考考你,若不是直角三角形,那勾股定理還成不成立?若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)你類(lèi)比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.〔下圖備用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一架2.5m長(zhǎng)的梯子斜立在一豎直的墻上,這時(shí)梯足距離墻底端0.7m,如果梯子的頂端沿墻下滑0.4m,那么梯足將下滑(  )
A.0.9mB.1.5mC.0.5mD.0.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖是由邊長(zhǎng)為1m的正方形地磚鋪設(shè)的地面示意圖,小明沿圖中所示的折線從A?B?C所走的路程為_(kāi)_____m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所對(duì)的邊分別記作a、b、c.
(1)如圖1,分別以△ABC的三條邊為邊長(zhǎng)向外作正方形,其正方形的面積由小到大分別記作S1、S2、S3,則有S1+S2=S3;
(2)如圖2,分別以△ABC的三條邊為直徑向外作半圓,其半圓的面積由小到大分別記作S1、S2、S3,請(qǐng)問(wèn)S1+S2與S3有怎樣的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)分別以直角三角形的三條邊為直徑作半圓,如圖3所示,其面積由小到大分別記作S1、S2、S3,根據(jù)(2)中的探索,直接回答S1+S2與S3有怎樣的數(shù)量關(guān)系;
(4)若Rt△ABC中,AC=6,BC=8,求出圖4中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案