如圖,為⊙的直徑,于點,

(1)求證:;
(2)求的長;
(3)延長,使得,連接,試判斷直 線與⊙的位置關系,并說明理由.
解:(1)證明:∵AB=AC,
∴∠ABC=∠C,                      …………1分
∵∠C=∠D,
∴∠ABC=∠D,                      …………2分
又∵∠BAE=∠EAB,
∴△ABE∽△ADB,                  …………3分
(2) ∵△ABE∽△ADB,
,                            …………4分
∴AB2=AD·AE=(AE+ED)·AE=(2+4)×2=12     …………5分
∴AB=.…………6分                  
(3) 直線FA與⊙O相切,理由如下:
連接OA,  …………7分

∵BD為⊙O的直徑,
∴∠BAD=90°,

BF=BO=,…………8分
∵AB=
∴BF=BO=AB,可證∠OAF=90°,
∴直線FA與⊙O相切.…………10分
(1)根據AB=AC,可得∠ABC=∠C,利用等量代換可得∠ABC=∠D然后即可證明△ABE∽△ADB.
(2)根據△ABE∽△ADB,利用其對應邊成比例,將已知數(shù)值代入即可求得AB的長.
(3)連接OA,根據BD為⊙O的直徑可得∠BAD=90°,利用勾股定理求得BD,然后再求證∠OAF=90°即可
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,AB是半圓直徑,半徑OC⊥AB于點O,AD平分∠CAB交弧BC于點D,連結CD、OD,給出以下四個結論:①AC∥OD;②;③△ODE∽△ADO;④.其中一定正確的結論有( )


A.1個        B.2個       C.3個       D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,⊙O是△ABC的外接圓,AB=AC=10,BC=12,P是上的一個動點,過點P作BC的平行線交AB的延長線于點D.
(1)當點P在什么位置時,DP是⊙O的切線?請說明理由;
(2)當DP為⊙O的切線時,求線段DP的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

母線長為2 ,底面圓的半徑為1的圓錐的側面積為___________.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點,CM的延長線交⊙O于點E,且EM>MC.連結DE,DE=
(1)求證:;
(2)求EM的長;
(3)求sin∠EOB的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

圓錐的底面半徑為r,母線為l,當r=1, l=3時,圓錐的側面展開的扇形面積為( ▲ )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

將一個半徑為6cm,母線長為15cm的圓錐形紙筒沿一條母線剪開并展平,所得的側面展開圖的圓心角是   ▲    度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如果一個扇形的弧長等于它的半徑,那么此扇形稱為“等邊扇形”.則半徑為2的“等邊扇形”的面積為(    ) 
A.B.1C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,⊙O中,OA⊥BC,垂足為H,∠AOB=50°,則圓周角∠ADC的度數(shù)是
A.50°B.25°C.100°D.40°

查看答案和解析>>

同步練習冊答案