精英家教網 > 初中數學 > 題目詳情
已知關于x的方程x2-2(k-1)x+k2=0有兩個實數根x1,x2
(1)求k的取值范圍;
(2)若x1+x2+x1x2=6,求k的值.
【答案】分析:(1)根據一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac的意義得到△≥0,即4(k-1)2-4×1×k2≥0,解不等式即可得到k的范圍;
(2)根據一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系得到x1+x2=2(k-1),x1x2=k2,則2(k-1)+k2=6,即k2+2k-8=0,利用因式分解法解得k1=-4,k2=2,然后由(1)中的k的取值范圍即可得到k的值.
解答:解:(1)∵方程x2-2(k-1)x+k2=0有兩個實數根x1,x2,
∴△≥0,即4(k-1)2-4×1×k2≥0,解得k≤,
∴k的取值范圍為k≤;

(2)∵方程x2-2(k-1)x+k2=0有兩個實數根x1,x2,
∴x1+x2=2(k-1),x1x2=k2,
∴2(k-1)+k2=6,即k2+2k-8=0,
∴k1=-4,k2=2,
∵k≤,
∴k=-4.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當△>0,方程有兩個不相等的實數根;當△=0,方程有兩個相等的實數根;當△<0,方程沒有實數根.也考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

8、已知關于x的方程x2+kx+1=0和x2-x-k=0有一個根相同,則k的值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•綿陽)已知關于x的方程x2-(m+2)x+(2m-1)=0.
(1)求證:方程恒有兩個不相等的實數根;
(2)若此方程的一個根是1,請求出方程的另一個根,并求以此兩根為邊長的直角三角形的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2007•西城區(qū)二模)已知關于x的方程x2+3x=8-m有兩個不相等的實數根.
(1)求m的最大整數是多少?
(2)將(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程x2-2(k+1)x+k2=0有兩個實數根,求k的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無論k取何實數值,方程總有實數根.
(2)若等腰△ABC的一邊長為a=6,另兩邊長b,c恰好是這個方程的兩個根,求此三角形的周長.

查看答案和解析>>

同步練習冊答案