【題目】如圖,在△ABC中,點DAB邊的中點,過點D作邊AB的垂線l,El上任意一點,且AC=5BC=8,則△AEC的周長最小值為______

【答案】13

【解析】

連接BE依據(jù)lAB的垂直平分線,可得AE=BE,進(jìn)而得到AE+CE=BE+CE,依據(jù)BE+CEBC,可知當(dāng)B,E,C在同一直線上時,BE+CE的最小值等于BC的長AC長不變,故△AEC的周長最小值等于AC+BC

如圖,連接BE

∵點DAB邊的中點lAB,∴lAB的垂直平分線,∴AE=BE,∴AE+CE=BE+CE

BE+CEBC,∴當(dāng)B,E,C在同一直線上時BE+CE的最小值等于BC的長,AC長不變,∴△AEC的周長最小值等于AC+BC=5+8=13.

故答案為:13.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面夾角是22°時,教學(xué)樓在建筑物的墻上留下高2米的影子CE;而當(dāng)光線與地面夾角是45°時,教學(xué)樓頂A在地面上的影子F與墻角C有13米的距離(B、F、C在一條直線上),求教學(xué)樓AB的高度(sin22°≈ ,cos22°≈ ,tan22°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點,且A,B兩點間的距離為10.動點P從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動.(1)設(shè)運動時間為t(t>0)秒,數(shù)軸上點B表示的數(shù)是   ,點P表示的數(shù)是   (用含t的代數(shù)式表示);(2)若點P、Q同時出發(fā),求:①當(dāng)點P運動多少秒時,點P與點Q相遇?②當(dāng)點P運動多少秒時,點P與點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讀句畫圖:如圖,直線CD與直線AB相交于C,

根據(jù)下列語句畫圖:

1)過點PPQCD,交AB于點Q;

2)過點PPRCD,垂足為R;

3)若∠DCB=120°,猜想∠PQC是多少度?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60 米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1: 的斜坡DB前進(jìn)30米到達(dá)點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°= ,cos = ,tan53°= , ≈1.732,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,AB=AC. (1)若∠A=36,在△ABC中畫一條線段,能得到2個等腰三角形(不包括△ABC),這2個等腰三角形的頂角的度數(shù)分別是_____;(2)若∠A36, 當(dāng)∠A=_____時,在等腰△ABC中畫一條線段,能得到2個等腰三角形(不包括△ABC).(寫出兩個答案即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.

(1)數(shù)軸上點A表示的數(shù)為________

(2)將長方形OABC沿數(shù)軸水平移動,移動后的長方形記為O′A′B′C′,移動后的長方形O′A′B′C′與原長方形OABC重疊部分(如圖2中陰影部分)的面積記為S.

①當(dāng)S恰好等于原長方形OABC面積的一半時,數(shù)軸上點A′表示的數(shù)是多少?

  ②設(shè)點A的移動距離AA′x.

  ()當(dāng)S4時,求x的值;

  )D為線段AA′的中點,點E在線段OO′上,且OEOO′,當(dāng)點D,E所表示的數(shù)互為相反數(shù)時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式計算正確的是( )
A.= ab4
B.(﹣1+b)(﹣b﹣1)=1﹣b2
C.5xy2﹣xy2=4
D.(a﹣b)2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校本課程”是學(xué)生課外活動的重要內(nèi)容,某校共有“文學(xué)欣賞”、“英語角”、“趣味數(shù)學(xué)”、“法律普及”這四種校本課程.為了解學(xué)生參加“文學(xué)欣賞”、“英語角”、“趣味數(shù)學(xué)”、“法律普及”校本課程(以下分別用A、B、C、D表示)的情況,對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成兩幅統(tǒng)計圖(尚不完整).
請根據(jù)以上信息,解答下列問題:
(1)本次抽樣調(diào)查的學(xué)生共有人.
(2)將兩幅統(tǒng)計圖補(bǔ)充完整;
(3)若該校有4000人,請估計參加法律普及的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案