【題目】如圖,為了測量出樓房AC的高度,從距離樓底C處60 米的點D(點D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1: 的斜坡DB前進30米到達點B,在點B處測得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°= ,cos = ,tan53°= , ≈1.732,結(jié)果精確到0.1米)
【答案】解:如圖作BN⊥CD于N,BM⊥AC于M.
在Rt△BDN中,BD=30,BN:ND=1: ,
∴BN=15,DN=15 ,
∵∠C=∠CMB=∠CNB=90°,
∴四邊形CMBN是矩形,
∴CM=BN=15,BM=CN=60 ﹣15 =45 ,
在Rt△ABM中,tan∠ABM= = ,
∴AM=60 ,
∴AC=AM+CM=15+60 .
【解析】如圖作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出線段BN,在RT△ABM中求出AM,再證明四邊形CMBN是矩形,得CM=BN即可解決問題.
【考點精析】本題主要考查了關(guān)于仰角俯角問題的相關(guān)知識點,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一塊三角形的空地,其三邊的長分別為20m,30m,40m,現(xiàn)要把它分成面積為2:3:4的三部分,分別種植不同的花草,請你設(shè)計一種方案,并簡單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB⊥BE于點B,DE⊥BE于點E.
(1)若∠A=∠D,AB=DE,則△ABC與△DEF全等的理由是____;
(2)若∠A=∠D,BC=EF,則△ABC與△DEF全等的理由是_________;
(3)若AB=DE,BC=EF,則△ABC與△DEF全等的理由是_______;
(4)若AB=DE,AC=DF,則△ABC與△DEF全等的理由是_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫推理理由:
已知:如圖,D,F,E分別是BC,AC,AB上的點,DF∥AB,DE∥AC,
試說明∠EDF=∠A.
解:∵DF∥AB(已知),
∴∠A+∠AFD=180°(____________________).
∵DE∥AC(已知),
∴∠AFD+∠EDF=180°(____________________).
∴∠A=∠EDF(____________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,∠C=30°,AD⊥BC于D,BE是∠ABC的平分線,且交AD于P,如果AP=2,則AC的長為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D是AB邊的中點,過點D作邊AB的垂線l,E是l上任意一點,且AC=5,BC=8,則△AEC的周長最小值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B、F、C、E在直線l上(F、C之間不能直接測量),點A、D在l異側(cè),測得AB=DE,AB∥DE,∠A=∠D.
(1)求證:△ABC≌△DEF;
(2)若BE=10m,BF=3m,求FC的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里(最后結(jié)果保留整數(shù))?
(參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校共有5個大餐廳和2個小餐廳,經(jīng)過測試:同時開放1個大餐廳、2個小餐廳,可供1680名學(xué)生就餐;同時開放2個大餐廳,1個小餐廳,可供2280名學(xué)生就餐.
(1)求1個大餐廳,1個小餐廳分別可供多少名 就餐?
(2)若7個餐廳同時開放,能否供全校的5300名學(xué)生就餐?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com