(2005•濱州)(Ⅰ)已知:如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,EF過點(diǎn)O與AB、CD分別相交于點(diǎn)E、F.
求證:BE=DF.
(Ⅱ)請(qǐng)寫出使如圖所示的四邊形ABCD為平行四邊形的條件(例如,填:AB∥CD且AD∥BC.在不添加輔助線的情況下,寫出除上述條件外的另外四組條件,將答案直接寫在下面的橫線上.)
(1):______;
(2):______;
(3):______;
(4):______.

【答案】分析:(1)運(yùn)用平行四邊形的性質(zhì)得到相關(guān)的線段、角相等即可;
(2)熟悉平行四邊形的判定方法.
解答:證明:(Ⅰ)在平行四邊形ABCD中,
∵AB∥CD,
∴∠1=∠2,∠3=∠4.
又∵OB=OD,
∴△BEO≌△DFO,
∴BE=DF.

(Ⅱ)(1)∠DAB=∠DCB且∠ADC=∠ABC(或兩組對(duì)角分別相等);
(2)AB=CD且AD=BC(或兩組對(duì)邊分別相等);
(3)OA=OC且OD=OB(或O是AC和BD的中點(diǎn);或AC與BD互相平分;或?qū)蔷互相平分);
(4)AD∥BC且AD=BC(或AB∥DC且AB=DC;或一組對(duì)邊平行且相等);AB∥CD且∠DAB=∠DCB(或一組對(duì)邊平行且一組對(duì)角相等).
點(diǎn)評(píng):本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對(duì)應(yīng)著一種性質(zhì),在應(yīng)用時(shí)應(yīng)注意它們的區(qū)別與聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2005•濱州)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(0,1),C(2,).
(Ⅰ)直線l:y=kx+b過A、B兩點(diǎn),求k、b的值;
(Ⅱ)求過A、B、C三點(diǎn)的拋物線Q的解析式;
(Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對(duì)稱軸與x軸相交于點(diǎn)E,那么在對(duì)稱軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2005•濱州)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(0,1),C(2,).
(Ⅰ)直線l:y=kx+b過A、B兩點(diǎn),求k、b的值;
(Ⅱ)求過A、B、C三點(diǎn)的拋物線Q的解析式;
(Ⅲ)設(shè)(Ⅱ)中的拋物線Q的對(duì)稱軸與x軸相交于點(diǎn)E,那么在對(duì)稱軸上是否存在點(diǎn)F,使⊙F與直線l和x軸同時(shí)相切?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2005•濱州)如圖,是一個(gè)風(fēng)箏的平面示意圖,四邊形ABCD是等腰梯形,E、F、G、H分別是各邊的中點(diǎn),假設(shè)圖中陰影部分所需布料的面積為S1,其它部分所需布料的面積之和為S2(邊緣外的布料不計(jì)),則( )

A.S1>S2
B.S1<S2
C.S1=S2
D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國(guó)中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(02)(解析版) 題型:填空題

(2005•濱州)在下面的網(wǎng)格中,請(qǐng)畫出△ABC關(guān)于點(diǎn)B的中心對(duì)稱圖形,并且再畫一個(gè)與△ABC相似但不全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2005•濱州)|-2|的倒數(shù)是( )
A.2
B.-2
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案