【題目】閱讀:對于所有的一元二次方程ax2+bx+c=0(a≠0)中,對于兩根x1,x2,存在如下關(guān)系:x1+x2=,x1x2=.試著利用這個關(guān)系解決問題.設(shè)方程2x2﹣5x﹣3=0的兩根為x1,x2,不解方程,求下列式子的值:2x12+4x22+5x1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3.在Rt△ABC的外部拼接一個合適的直角三角形,使得拼成的圖形是一個等腰三角形,如圖所示.要求:在答題卡的兩個備用圖中分別畫出兩種與示例不同的拼接方法,并在圖中標(biāo)明拼接的直角三角形的三邊長.(請同學(xué)們先用鉛筆畫出草圖,確定后再用0.5毫米的黑色簽字筆畫出正確的圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李航想利用太陽光測量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計(jì)了一種測量方案,具體測量情況如下:如示意圖,李航邊移動邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF是1.6m,請你幫李航求出樓高AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年平昌冬奧會在2月9日到25日在韓國平昌郡舉行,為了調(diào)查中學(xué)生對冬奧會比賽項(xiàng)目的了解程度,某中學(xué)在學(xué)生中做了一次抽樣調(diào)查,調(diào)查結(jié)果共分為四個等級:A、非常了解B、比較了解C、基本了解D、不了解.根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了如圖所示的不完整的三種統(tǒng)計(jì)圖表.
對冬奧會了解程度的統(tǒng)計(jì)表
對冬奧會的了解程度 | 百分比 |
A非常了解 | 10% |
B比較了解 | 15% |
C基本了解 | 35% |
D不了解 | n% |
(1)n= ;
(2)扇形統(tǒng)計(jì)圖中,D部分扇形所對應(yīng)的圓心角是 ;
(3)請補(bǔ)全條形統(tǒng)計(jì)圖;
(4)根據(jù)調(diào)查結(jié)果,學(xué)校準(zhǔn)備開展冬奧會的知識競賽,某班要從“非常了解”程度的小明和小剛中選一人參加,現(xiàn)設(shè)計(jì)了如下游戲來確定誰參賽,具體規(guī)則是:把四個完全相同的乒乓球標(biāo)上數(shù)字1,2,3,4然后放到一個不透明的袋中,一個人先從袋中摸出一個球,另一人再從剩下的三個球中隨機(jī)摸出一個球,若摸出的兩個球上的數(shù)字和為偶數(shù),則小明去,否則小剛?cè),請用畫樹狀圖或列表的方法說明這個游戲是否公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AD是△ABC的角平分線,DE//AC交AB于E,DF//AB交AC于F,
(1)求證:四邊形AEDF是菱形;
(2)當(dāng)△ABC滿足什么條件時,四邊形AEDF是正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小宇將兩張長為8寬為2的矩形條交叉如圖①,發(fā)現(xiàn)重疊部分可能是一個菱形.
(1)請你幫助小宇證明四邊形ABCD是菱形.
(2)小宇又發(fā)現(xiàn):如圖②時,菱形ABCD的周長最小,等于 ;
(3)如圖③時菱形ABCD的周長最大,求此時菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩地相距50千米.星期天上午8:00小聰同學(xué)在父親陪同下騎山地車從甲地前往乙地.2小時后,小明的父親騎摩托車沿同一路線也從甲地前往乙地,他們行駛的路程(千米)與小聰行駛的時間(小時)之間的函數(shù)關(guān)系如圖所示,小明父親出發(fā)多少小時,行進(jìn)中的兩車相距8千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以D為頂點(diǎn)的拋物線y=﹣x2+bx+c交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,直線BC的表達(dá)式為y=﹣x+3.
(1)求拋物線的表達(dá)式;
(2)在直線BC上有一點(diǎn)P,使PO+PA的值最小,求點(diǎn)P的坐標(biāo);
(3)在x軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形與△BCD相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com