【題目】如圖,已知:AD是△ABC的角平分線,DE//AC交AB于E,DF//AB交AC于F,
(1)求證:四邊形AEDF是菱形;
(2)當△ABC滿足什么條件時,四邊形AEDF是正方形?請說明理由.
【答案】(1)見詳解;(2)見詳解.
【解析】
(1)根據(jù)DE∥AC交AB于點E,DF∥AB交AC于點F,可以判斷四邊形AEDF是平行四邊形,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)即可證明結(jié)論成立;
(2)根據(jù)有一個角是直角的菱形是正方形可以解答本題.
(1)證明:∵DE∥AC交AB于點E,DF∥AB交AC于點F,
∴四邊形AEDF是平行四邊形,∠EAD=∠ADF,
∵AD是△ABC的角平分線,
∴∠EAD=∠FAD,
∴∠ADF=∠FAD,
∴FA=FD,
∴四邊形AEDF是菱形(有一組鄰邊相等的平行四邊形是菱形);
(2)解:當△ABC是直角三角形,∠BAC=90°,時,四邊形AEDF是正方形,
理由:∵△ABC是直角三角形,∠BAC=90°,
由(1)知四邊形AEDF是菱形,
∴四邊形AEDF是正方形(有一個角是直角的菱形是正方形).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進行下去,直至得到C2018,若點P(4035,m)在第2018段拋物線C2018上,則m的值是
A. 1 B. -1 C. 0 D. 4035
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一副秋千架,左圖是從正面看,當秋千繩子自然下垂時,踏板離地面0.5m(踏板厚度忽略不計), 右圖是從側(cè)面看,當秋千踏板蕩起至點B位置時,點B離地面垂直高度BC為1m,離秋千支柱AD的水平距離BE為1.5m(不考慮支柱的直徑).求秋千支柱AD的高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,AD=6,點P是邊BC上的動點,現(xiàn)將紙片折疊,使點A與點P重合,折痕與矩形邊的交點分別為E、F,要使折痕始終與邊AB、AD有交點,則BP的取值范圍是_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:對于所有的一元二次方程ax2+bx+c=0(a≠0)中,對于兩根x1,x2,存在如下關(guān)系:x1+x2=,x1x2=.試著利用這個關(guān)系解決問題.設(shè)方程2x2﹣5x﹣3=0的兩根為x1,x2,不解方程,求下列式子的值:2x12+4x22+5x1.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD的∠BAD=∠C=90°,AB=AD,AE⊥BC于E,△ABE繞著點A旋轉(zhuǎn)后能與△ADF重合,若AF=5cm,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于的一元二次方程.
(1)若此方程的一個根為1,求的值;
(2)求證:不論取何實數(shù),此方程都有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式: ;;;……
根據(jù)上面等式反映的規(guī)律,解答下列問題:
(1)請根據(jù)上述等式的特征,在括號內(nèi)填上同一個實數(shù): ( )-5=( );
(2)小明將上述等式的特征用字母表示為:(、為任意實數(shù)).
①小明和同學討論后發(fā)現(xiàn):、的取值范圍不能是任意實數(shù).請你直接寫出、不能取哪些實數(shù).
②是否存在、兩個實數(shù)都是整數(shù)的情況?若存在,請求出、的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線:y=ax2+bx+c(a<0)經(jīng)過A(2,4)、B(﹣1,1)兩點,頂點坐標為(h,k),則下列正確結(jié)論的序號是( )
①b>1;②c>2;③h>;④k≤1.
A. ①②③④ B. ①②③ C. ①②④ D. ②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com