如圖,點(diǎn)O是矩形ABCD的中心,E是AB上的點(diǎn),沿CE折疊后,點(diǎn)B恰好與點(diǎn)O重合.若BC=3,則折痕CE的長為_____________________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年北京市房山區(qū)中考二模數(shù)學(xué)試卷(解析版) 題型:選擇題
如果二次函數(shù)的最小值為負(fù)數(shù),則m的取值范圍是( )
A.m﹤1 B.m﹥1 C.m≤1 D.m≥1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市平谷區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的縱坐標(biāo)為5.點(diǎn)P是直線AB下方的拋物線上的一動點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長,并求出線段PD長的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市平谷區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題
某;@球班21名同學(xué)的身高如下表:
身高(cm) | 180 | 186 | 188 | 192 | 208 |
人數(shù)(個) | 4 | 6 | 5 | 4 | 2 |
則該;@球班21名同學(xué)身高的眾數(shù)和中位數(shù)分別是( )
A.186,188 B.188,186 C.186,186 D.208,188
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市密云縣中考一模數(shù)學(xué)試卷(解析版) 題型:解答題
如圖1所示,將一個邊長為2的正方形ABCD和一個長為2、寬為1的長方形CEFD拼在一起,構(gòu)成一個大的長方形ABEF.現(xiàn)將小長方形CEFD繞點(diǎn)C順時針旋轉(zhuǎn)至CE′F′D′,旋轉(zhuǎn)角為α.
(1)當(dāng)點(diǎn)D′恰好落在EF邊上時,求旋轉(zhuǎn)角α的值;
(2)如圖2,G為BC中點(diǎn),且0°<α<90°,求證:GD′=E′D;
(3)小長方形CEFD繞點(diǎn)C順時針旋轉(zhuǎn)一周的過程中,△DCD′與△CBD′能否全等?若能,直接寫出旋轉(zhuǎn)角α的值;若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年北京市密云縣中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,在△ABC中,點(diǎn)D,E分別在邊AB,AC上,DE∥BC,已知AE=6, ,則EC的長是( )
A.4.5 B.8 C.10.5 D.14
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com