【題目】請寫出“等腰三角形的兩底角相等”的逆命題:__________

【答案】有兩個角相等的三角形是等腰三角形

【解析】∵原命題的題設(shè)是:“一個三角形是等腰三角形”,結(jié)論是“這個三角形兩底角相等”,

∴命題“等腰三角形的兩個底角相等”的逆命題是“有兩個角相等的三角形是等腰三角形”,

故答案為:有兩個角相等的三角形是等腰三角形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型水果超市銷售無錫水蜜桃,根據(jù)前段時間的銷售經(jīng)驗,每天的售價x(元/箱)與銷售量y(箱)有如表關(guān)系:

每箱售價x(元)

68

67

66

65

40

每天銷量y(箱)

40

45

50

55

180

已知y與x之間的函數(shù)關(guān)系是一次函數(shù).

(1)求y與x的函數(shù)解析式;

(2)水蜜桃的進價是40元/箱,若該超市每天銷售水蜜桃盈利1600元,要使顧客獲得實惠,每箱售價是多少元?

(3)七月份連續(xù)陰雨,銷售量減少,超市決定采取降價銷售,所以從7月17號開始水蜜桃銷售價格在(2)的條件下,下降了m%,同時水蜜桃的進貨成本下降了10%,銷售量也因此比原來每天獲得1600元盈利時上漲了2m%(m<100),7月份(按31天計算)降價銷售后的水蜜桃銷售總盈利比7月份降價銷售前的銷售總盈利少7120元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分∠AOC和∠BOC.

(1)與∠AOE互補的角是
(2)若∠AOC=72°,求∠DOE的度數(shù);
(3)當(dāng)∠AOC=x時,請直接寫出∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A在數(shù)軸上對應(yīng)的數(shù)為a,點B對應(yīng)的數(shù)為b,且a、b滿足|a+3|+(b﹣2)2=0.

(1)求A、B兩點的坐標(biāo);
(2)點C在數(shù)軸上對應(yīng)的數(shù)為x,且x是方程2x+1= x﹣8的解
①求線段BC的長;
②在數(shù)軸上是否存在點P,使PA+PB=BC?求出點P對應(yīng)的數(shù);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們用有理數(shù)的運算研究下面問題.規(guī)定:水位上升為正,水位下降為負(fù);幾天后為正,幾天前為負(fù).如果水位每天下降4cm,那么3天后的水位變化用算式表示正確的是(  )

A. (+4)×(+3) B. (+4)×(﹣3) C. (﹣4)×(+3) D. (﹣4)×(﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一游客在某城市旅游期間,沿街步行前往著名的電視塔觀光,他在A處望塔頂C的仰角為30°,繼續(xù)前行250m后到達(dá)B處,此時望塔頂?shù)难鼋菫?5°.已知這位游客的眼睛到地面的距離約為170cm,假若游客所走路線直達(dá)電視塔底.請你計算這座電視塔大約有多高?(結(jié)果保留整數(shù). 1.7,1.4;E,F(xiàn)分別是兩次測量時游客眼睛所在的位置.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=(m為常數(shù))的圖象在一、三象限.

(1)求m的取值范圍;

(2)如圖,若該反比例函數(shù)的圖象經(jīng)過ABOD的頂點D,點A、B的坐標(biāo)分別為(0,3),(2,0).

求出函數(shù)解析式;

設(shè)點P是該反比例函數(shù)圖象上的一點,若OD=OP,則P點的坐標(biāo)為 ;若以D、O、P為頂點的三角形是等腰三角形,則滿足條件的點P的個數(shù)為 個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AD是△ABC的角平分線且交BC于D,過點D作DE⊥AB于E,DF⊥AC于F,則下列結(jié)論不一定正確的是( )

A.DE=DF B.BD =CD C.AE=AF D.∠ADE=∠ADF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合運用:

1)已知,求a2+的值.

2)已知a4+的小數(shù)部分,b是﹣+5的小數(shù)部分,c是(﹣+21的整數(shù)部分,求a2cb2c的值.

查看答案和解析>>

同步練習(xí)冊答案