【題目】下列各式由左到右的變形中,屬于因式分解的是( )

A. a(m+n)= am+an B. a2﹣b2﹣c2 =(a﹣b)(a+b)﹣c2

C. 10x2﹣5x = 5x(2x﹣1) D. x2﹣16+6x =(x+4)(x﹣4)+ 6x

【答案】C

【解析】

試題解析:A.該變形為去括號(hào),故A不是因式分解;

B.該等式右邊沒有化為幾個(gè)整式的乘積形式,故B不是因式分解;

D.該等式右邊沒有化為幾個(gè)整式的乘積形式,故D不是因式分解;

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一平面內(nèi),∠AOB=60°,∠BOC=45°,則∠AOC=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC,∠ACB=90°,AC=3,BC=4,將邊Ac沿CE翻折,使點(diǎn)A落在AB上的D處,再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)F處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段BF的長(zhǎng)為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點(diǎn)O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.

(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線a平行于x軸,點(diǎn)M(2,-3)是直線a上的一個(gè)點(diǎn).若點(diǎn)N也是直線a上的一個(gè)點(diǎn),MN=5,則點(diǎn)N的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(P與B、C不重合),連接AP,過點(diǎn)B作BQ⊥AP交CD于點(diǎn)Q,將△BQC沿BQ所在的直線對(duì)折得到△BQC′,延長(zhǎng)QC′交BA的延長(zhǎng)線于點(diǎn)M.

(1)試探究AP與BQ的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)當(dāng)AB=3,BP=2PC,求QM的長(zhǎng);
(3)當(dāng)BP=m,PC=n時(shí),求AM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在以下圖案中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,E,F(xiàn),G,H分別為邊AB,BC,CD,DA上的點(diǎn),HA=EB=FC=GD,連接EG,F(xiàn)H,交點(diǎn)為O.

(1)如圖1,連接GH,GF,求證:GH=GF;
(2)如圖2,連接EF,F(xiàn)G,GH,HE,試判斷四邊形EFGH的形狀,并證明你的結(jié)論;

(3)將正方形ABCD沿線段EG,HF剪開,再把得到的四個(gè)四邊形按圖3的方式拼接成一個(gè)四邊形.若正方形ABCD的邊長(zhǎng)為3cm,HA=EB=FC=GD=1cm,則圖3中陰影部分的面積為cm2 . (直接寫結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】要切一塊面積為16cm2的正方形鋼板,它的邊長(zhǎng)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案