在平面直角坐標系中,已知△ABC三個頂點的坐標分別為A(0,0)、B(3,3)、C(4,1)
(1)畫出△ABC及△ABC繞點A逆時針旋轉(zhuǎn)90°后得到的△AB1C1;
(2)求出△ABC在上述旋轉(zhuǎn)過程中掃過的面積.

解:(1)如圖所示:△AB1C1即為所求;

(2)如圖所示,△AB1C1即為所求作的三角形,
根據(jù)勾股定理,AC==,
扇形ACC1的面積==,
△AB1C1的面積=3×4-×1×4-×1×2-×3×3=4.5.
所以,△ABC掃過的面積為π+4.5.
分析:(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C繞點A逆時針旋轉(zhuǎn)90°的對應點的位置,然后順次連接即可;
(2)根據(jù)圖形可知,掃過的面積等于以點A為圓心,AC長為半徑的扇形的面積加上△AB1C1的面積,然后列式計算即可得解.
點評:此題主要考查了圖形的旋轉(zhuǎn)變換以及扇形面積公式與三角形的面積的計算方法,正確得出各對應點的坐標是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案