【題目】如圖,已知在中,,在上取點,使得,若

1)求證:;

2)若平分,求的度數(shù).

【答案】1)見解析;(2)∠ABE120°

【解析】

(1)欲證明AB=BE,只需推知∠A=E即可.
2)由三角形內(nèi)角和定理和等腰三角形的性質(zhì)求得∠A=30°,結(jié)合(1)中的∠A=EABE的內(nèi)角和是180°解答.

1)∵ADCD ∴∠A=∠ACD

又∵CDBE ∴∠ACD=∠E

∴∠A=∠E

ABBE

2)∵在RtABC中,∠ABC90°

∴∠A+ACB90°

CD平分∠ACB,

∴∠ACD=∠BCD

又∵∠A=∠ACD,

∴∠A+ACD+BCD3A90°

∴∠A30°

∵由(1)得∠A=∠E30°

∴∠ABE180°2A120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°.

(1)用尺規(guī)在邊BC上求作一點P,使PA=PB(不寫作法,保留作圖痕跡);

(2)連接AP,若AP平分∠CAB,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD的一條邊AD8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.如圖,已知折痕與邊BC交于點O,連結(jié)AP、OP、OA

1)求證:OCP∽△PDA;

2)若tanPAO,求邊AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場

乙林場

購樹苗數(shù)量

銷售單價

購樹苗數(shù)量

銷售單價

不超過1000棵時

4/

不超過2000棵時

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y(元)、y(元).

1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為   元,若都在乙林場購買所需費用為   元;

2)分別求出y、yx之間的函數(shù)關(guān)系式;

3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于的不等式組有且僅有三個整數(shù)解,且關(guān)于的分式方程的解為整數(shù),則符合條件的整數(shù)的個數(shù)是  

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AC,BD相交于點O,BC2OC,EAB邊上一點.

1)若CE6,∠ACE15°,求BC的長;

2)若FBO上一點,且BFEF,GCE中點,連接FG,AG,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,點O在AB上,BC=CD,過點C作⊙O的切線,分別交AB,AD的延長線于點E,F(xiàn).

1)求證:AF⊥EF;(2)若cosA=,BE=1,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點,連接BM,MN,BN.BAD=60°,AC平分∠BAD,AC=2,BN的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某班級決定開展球類活動,要求每個學(xué)生必須在籃球、足球、排球、乒乓球、羽毛球中選擇一項參加訓(xùn)練(只選擇一項),根據(jù)學(xué)生的報名情況制成如下統(tǒng)計表:

項目

籃球

足球

排球

乒乓球

羽毛球

報名人數(shù)

12

8

4

a

10

占總?cè)藬?shù)的百分比

24%

b

1)該班學(xué)生的總?cè)藬?shù)為   人;

2)由表中的數(shù)據(jù)可知:a   ,b   

3)報名參加排球訓(xùn)練的四個人為兩男(分別記為A、B)兩女(分別記為C、D),現(xiàn)要隨機(jī)在這4人中選2人參加學(xué)校組織的校級訓(xùn)練,請用列表或樹狀圖的方法求出剛好選中一男一女的概率.

查看答案和解析>>

同步練習(xí)冊答案