如圖,在⊙O中,過直徑AB延長線上的點C作⊙O的一條切線,切點為D,若AC=7,AB=4,則sinC的值為        .

 

【答案】

。

【解析】如圖,連接OD,

∵DC是⊙O的切線,∴DC⊥OD,即∠ODC=90°。

∵AB=4,∴OA=OD=2。

∵AC=7,∴OC=5。

。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
1
2
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2
;
(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題
(1)讀句畫圖,填空.
①如圖,∠AOB是平角,過點O畫射線OC
②用直尺和圓規(guī)分別畫出∠AOC和∠BOC的平分線OD,OE
③∠DOE是
角(填“直”、“鈍”或“銳”)
(2)圖中的直線l是表示一條小河,點A、B表示兩個村莊,在何處架橋才能A村到B村的路程最短?請畫出示意圖,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川省沐川縣初三二調(diào)考試數(shù)學(xué)卷(解析版) 題型:解答題

從甲、乙兩題中選做一題,如果兩題都做,只以甲題計分.

1.甲題:若關(guān)于x的一元二次方程有實數(shù)根α、β.求實數(shù)k的取值范圍;設(shè),求t的最小值.

2.乙題:如圖,在△ABC 中,點O是AC邊上的一個動點,過點O作直

線MN∥BC,設(shè)MN交∠BCA的角平分線于點E,交∠BCA的外角平分線于點F.當(dāng)點O運(yùn)動到何處時,四邊形AECF是矩形?并證明你的結(jié)論.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

學(xué)習(xí)過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉(zhuǎn)化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=數(shù)學(xué)公式.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=______,sad90°=______,sad120°=______;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是______;
(3)如圖,已知數(shù)學(xué)公式,其中A為銳角,試求sadA的值;
(4)設(shè)sinA=k,請直接用k的代數(shù)式表示sadA的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖,在△ABC中,點O是邊AC上一個動點,過O作直 線MN∥BC,設(shè)MN交∠BCA的平分線于點E,交∠BCA的外角平分線于點F。
(1)探究:線段OE與OF的數(shù)量關(guān)系并加以證明;
(2)當(dāng)點O在邊AC上運(yùn)動時,四邊形BCFE會是菱形嗎?若是,請證明,若不是,則說明理由;
(3)當(dāng)點O運(yùn)動到何處,且△ABC滿足什么條件時,四邊形AECF是正方形?

查看答案和解析>>

同步練習(xí)冊答案