如圖7-4,BCED于O,∠A=27°,∠D=20°,則∠B=          ,∠ACB=        

   

解:∵∠BED=∠A+∠D=47°

            ∴∠B=180°-90°-47°=43°

            ∴∠BCD=27°+43°=70°

            ∴∠ACB=180°-70°=110°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點(diǎn)C.
(1)求拋物線的解析式;
(2)在拋物線(對(duì)稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請(qǐng)說明理由;
(3)如圖②,E為BC延長(zhǎng)線上一動(dòng)點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②
BF
AF
=
BG
AG
,其中有且只有一個(gè)成立,請(qǐng)你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,D是BC上一點(diǎn),E是AB上一點(diǎn),AD、CE交于點(diǎn)P,且AE:EB=3:2,CP:CE=5:6,那么DB:CD=
1:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,已知BC⊥CD,∠1=∠2=∠3.
(1)求證:AC⊥BD;
(2)若∠4=70°,∠5=∠6,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知BC是⊙O的直徑,P是⊙O上一點(diǎn),A是
BP
的中點(diǎn),AD⊥BC于點(diǎn)D,BP與AD相交于點(diǎn)E.
(1)當(dāng)BC=6且∠ABC=60°時(shí),求
AB
的長(zhǎng);
(2)求證:AE=BE.
(3)過A點(diǎn)作AM∥BP,求證:AM是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,若AC⊥BC,∠A=58°,D是CB延長(zhǎng)線上的一點(diǎn).則∠ABD=
148
148
°.

查看答案和解析>>

同步練習(xí)冊(cè)答案