在一個(gè)不透明的口袋中裝有6個(gè)完全相同的小球,把它們分別標(biāo)號(hào)為1,2,3,4,5,6,從中隨機(jī)摸出一個(gè)小球,其標(biāo)號(hào)大于2的概率為( )

A. B. C. D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2015年人教版初中數(shù)學(xué)七年級(jí)下冊(cè)5.1.1練習(xí)卷(解析版) 題型:選擇題

如圖所示,直線l1,l2,l3相交于一點(diǎn),下面對(duì)∠α、∠β、∠γ、∠θ的度數(shù)的判斷完全正確的一組是( 。

A.∠α=90°,∠β=30°,∠γ=90°,∠θ=60°

B.∠α=∠γ=90.,∠β=60.,∠θ=60°

C.∠α=∠β=60°,∠γ=90°,∠θ=30°

D.∠α=∠γ=90°,∠β=60°,∠θ=30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市拱墅區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題

在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B,C重合),連結(jié)AD,作∠ADE=∠B=α,DE交AC于點(diǎn)E,且cosα=.有下列結(jié)論:①△ADE∽△ACD; ②當(dāng)BD=6時(shí),△ABD與△DCE全等;③當(dāng)△DCE為直角三角形時(shí),BD=8;④3.6≤AE<10.其中正確的結(jié)論是( )

A.①③ B.①④ C.①②④ D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市濱江區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:填空題

如圖1為兩個(gè)邊長(zhǎng)為1的正方形組成的格點(diǎn)圖,點(diǎn)A,B,C,D都在格點(diǎn)上,AB,CD交于點(diǎn)P,則tan∠BPD= ,如果是n個(gè)邊長(zhǎng)為1的正方形組成的格點(diǎn)圖,如圖2,那么tan∠BPD= .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年浙江省杭州市濱江區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,已知OP平分∠AOB,∠AOB=, PC⊥OA于點(diǎn)C, PD⊥OB于點(diǎn)D, EP∥OA,交OB于點(diǎn)E ,且EP=6.若點(diǎn)F是OP的中點(diǎn),則CF的長(zhǎng)是( )

A.6 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年四川省資陽市中考適應(yīng)性檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖1,已知在平行四邊形ABCD中,AB=10,BC=16,sinB=,點(diǎn)P是邊BC上的動(dòng)點(diǎn),以CP為半徑的圓C與邊AD交于點(diǎn)E、F(點(diǎn)F在點(diǎn)E的右側(cè)),射線CE與射線BA交于點(diǎn)G.

 

(1)當(dāng)圓C經(jīng)過點(diǎn)A時(shí),求CP的長(zhǎng);

(2)聯(lián)結(jié)AP,當(dāng)AP∥CG時(shí),求弦EF的長(zhǎng);

(3)當(dāng)△AGE是等腰三角形時(shí),求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年四川省資陽市中考適應(yīng)性檢測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題

如圖①,在正方形ABCD中,點(diǎn)P沿邊DA從點(diǎn)D開始向點(diǎn)A以2cm/s的速度移動(dòng);同時(shí),點(diǎn)Q沿邊AB、BC從點(diǎn)A開始向點(diǎn)C以3cm/s的速度移動(dòng).當(dāng)點(diǎn)P移動(dòng)到點(diǎn)A時(shí),P、Q同時(shí)停止移動(dòng).設(shè)點(diǎn)P出發(fā)x s時(shí),△PAQ的面積為ycm2,y與x的函數(shù)圖像如圖2 所示,則線段EF所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年四川省階段S校九年級(jí)聯(lián)考二數(shù)學(xué)試卷(解析版) 題型:解答題

(9分)【問題引入】

幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有。麄?cè)撛鯓优抨?duì)才能使得總的排隊(duì)時(shí)間最短?

假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者之前,容易求出兩人接滿水等候(T+2t)分鐘?梢,要使總的排隊(duì)時(shí)間最短。拎小桶者應(yīng)排在拎大桶者前面。這樣,我們可以猜測(cè),幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).

規(guī)律總結(jié):

事實(shí)上,只要不按照從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需t分鐘,并設(shè)拎大桶者開始接水時(shí)已經(jīng)等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者接滿水一共等候了(m+T+t)分鐘,兩人共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交換位置,即局部調(diào)整這兩個(gè)人的位置,同樣可以計(jì)算兩個(gè)人接滿水共等候了 __ ___分鐘,共節(jié)省了 _________分鐘,而其他人的等候時(shí)間未變。這說明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者前,都可以這樣局部調(diào)整,從而使得總等候時(shí)間減少。這樣經(jīng)過一系列調(diào)整之后,整個(gè)隊(duì)伍都是從小到大排列,就達(dá)到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.

【方法探究】

一般地,對(duì)某些涉及多個(gè)可變對(duì)象的數(shù)學(xué)問題,先對(duì)其少數(shù)對(duì)象進(jìn)行調(diào)整,其他對(duì)象暫時(shí)保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想方法就叫做局部調(diào)整法.

【實(shí)踐應(yīng)用1】

如圖1,在銳角△ABC中,AB=4,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是多少?

解析:(1)先假定N為定點(diǎn),調(diào)整M到合適位置,使BM+MN有最小值(相對(duì)的).

容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對(duì)稱點(diǎn)N′),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對(duì)最小值的點(diǎn).(如圖2,M點(diǎn)確定方法找到)

(2)再考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.

可以理解,BM+MN = BM+MN′,所以要使BM+MN′有最小值,只需使 ,此時(shí)BM+MN的最小值為 .

【實(shí)踐應(yīng)用2】

如圖,把邊長(zhǎng)是3的正方形等分成9個(gè)小正方形,在有陰影的兩個(gè)小正方形內(nèi)(包括邊界)分別任取點(diǎn)P、R,與已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,求△PQR的最大面積,并在圖2中畫出面積最大時(shí)的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014-2015學(xué)年山東省泰安市肥城中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題

方程的解是

A.x=0 B.x=0或x=5 C.x=6 D.x=0或x=6

查看答案和解析>>

同步練習(xí)冊(cè)答案