【題目】小明在做課本“目標(biāo)與評定”中的一道題:如圖1,直線a,b所成的角跑到畫板外面去了,你有什么辦法量出這兩條直線所成的角的度數(shù)?小明的做法是:如圖2,畫PC∥a,量出直線b與PC的夾角度數(shù),即直線a,b所成角的度數(shù).
(1)請寫出這種做法的理由;
(2)小明在此基礎(chǔ)上又進(jìn)行了如下操作和探究(如圖3):①以P為圓心,任意長為半徑畫圓弧,分別交直線b,PC于點A,D;②連結(jié)AD并延長交直線a于點B,請寫出圖3中所有與∠PAB相等的角,并說明理由;
(3)請在圖3畫板內(nèi)作出“直線a,b所成的跑到畫板外面去的角”的平分線(畫板內(nèi)的部分),只要求作出圖形,并保留作圖痕跡.

【答案】
(1)解:PC∥a(兩直線平行,同位角相等)
(2)解:∠PAB=∠PDA=∠BDC=∠1,

如圖,∵PA=PD,

∴∠PAB=∠PDA,

∵∠BDC=∠PDA(對頂角相等),

又∵PC∥a,

∴∠PDA=∠1,

∴∠PAB=∠PDA=∠BDC=∠1


(3)解:如圖,作線段AB的垂直平分線EF,則EF是所求作的圖形.


【解析】(1)根據(jù)平行線的性質(zhì)得出即可;(2)根據(jù)題意,有3個角與∠PAB相等.由等腰三角形的性質(zhì),可知∠PAB=∠PDA;又對頂角相等,可知∠BDC=∠PDA;由平行線性質(zhì),可知∠PDA=∠1.因此∠PAB=∠PDA=∠BDC=∠1;(3)作出線段AB的垂直平分線EF,由等腰三角形的性質(zhì)可知,EF是頂角的平分線,故EF即為所求作的圖形.
【考點精析】根據(jù)題目的已知條件,利用平行線的性質(zhì)和等腰三角形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ);等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE是半圓O的直徑,弦AB=BC=4 ,弦CD=DE=4,連結(jié)OB,OD,則圖中兩個陰影部分的面積和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC,∠ACB的平分線相交于點F,過點F作DE∥BC,交AB于D,交AC于E,那么下列結(jié)論正確的是:①△BDF,△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周長為AB+AC;④BD=CE.(  )

A. ③④ B. ①② C. ①②③ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程m1x2+ x+1=0的兩根分別為x1 , x2 , 一元二次方程m2x2+ x+1=0的兩根為x3 , x4 , 若x1<x3<x4<x2<0,則m1 , m2的大小關(guān)系為(
A.0>m1>m2
B.0>m2>m1
C.m2>m1>0
D.m1>m2>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有一個“Z”型的工件(工件厚度忽略不計),如圖示,其中AB為20cm,BC為60cm,∠ABC=90°,∠BCD=50°,求該工件如圖擺放時的高度(即A到CD的距離).(結(jié)果精確到0.1m,參考數(shù)據(jù):sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一種“十位上的數(shù)字比個位、百位上的數(shù)字都要小”的三位數(shù)叫做“V數(shù)”如“947”就是一個“V數(shù)”.若十位上的數(shù)字為2,則從1,3,4,5中任選兩數(shù),能與2組成“V數(shù)”的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點D是AB的中點,連接CD,過點B作BG⊥CD,分別交CD,CA于點E,F(xiàn),與過點A且垂直于AB的直線相交于點G,連接DF,給出以下五個結(jié)論: ① ;②∠ADF=∠CDB;③點F是GE的中點;④AF= AB;⑤SABC=5SBDF ,
其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC于點O,點P、D分別在AO和BC上,PB=PD,DE⊥AC于點E,求證:△BPO≌△PDE.

(1)理清思路完成解答
本題證明的思路可用下列框圖表示:

根據(jù)上述思路,請你完整地書寫本題的證明過程.
(2)若PB平分∠ABO,其余條件不變.求證:AP=CD.
(3)知識遷移,探索新知
若點P是一個動點,點P運(yùn)動到OC的中點P′時,滿足題中條件的點D也隨之在直線BC上運(yùn)動到點D′,請直接寫出CD′與AP′的數(shù)量關(guān)系.(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數(shù)是(
A.70°
B.65°
C.60°
D.55°

查看答案和解析>>

同步練習(xí)冊答案