(2007•威海)如圖,AB是⊙O的直徑,點C、D、E都在⊙O上,若∠C=∠D=∠E,則∠A+∠B=    度.
【答案】分析:本題關(guān)鍵是理清弧的關(guān)系,找出等弧,則可根據(jù)“同圓中等弧對等角”求解,
由∠C=∠D=∠E,得弧AC=弧BC=弧DE,即弧AC與弧BC的和是半圓,則弧AC對的圓心角是90度,弧AC對的圓周角是45度,則弧AC與弧BC與弧DE分別所對的圓心角的和是270度,有弧AD與弧BE的和的度數(shù)是90度,即,弧AD與弧BE分別所對的圓周角的和為45度,連接AC,BC,有∠ACD+∠BCE=45°,∠A+∠B=∠ACE+∠BCD=∠ACD+∠BCE+2∠DCE=45°+90°=135°.
解答:解:∵∠C=∠D=∠E,
∴弧AC=弧BC=弧DE,
∵弧AC與弧BC的和是半圓,
∴弧AC對的圓心角是90°,
弧AC對的圓周角是45°,
∴弧AC與弧BC與弧DE分別所對的圓心角的和是270°,
∴弧AD與弧BE的和的度數(shù)是90°,
即,弧AD與弧BE分別所對的圓周角的和為45°,
連接AC,BC,有∠ACD+∠BCE=45°,
∠A+∠B=∠ACE+∠BCD=∠ACD+∠BCE+2∠DCE=45°+90°=135°.
點評:本題利用了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,2),點B的坐標(biāo)為(3,1),二次函數(shù)y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數(shù)表達(dá)式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數(shù)表達(dá)式;
(3)設(shè)拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標(biāo);
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年高中段自主招生科學(xué)素養(yǎng)模擬卷(數(shù)學(xué)部分)(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,2),點B的坐標(biāo)為(3,1),二次函數(shù)y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數(shù)表達(dá)式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數(shù)表達(dá)式;
(3)設(shè)拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標(biāo);
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年山東省威海市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•威海)如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(1,2),點B的坐標(biāo)為(3,1),二次函數(shù)y=x2的圖象記為拋物線l1
(1)平移拋物線l1,使平移后的拋物線過點A,但不過點B,寫出平移后的一個拋物線的函數(shù)表達(dá)式:______(任寫一個即可);
(2)平移拋物線l1,使平移后的拋物線過A,B兩點,記為拋物線l2,如圖2,求拋物線l2的函數(shù)表達(dá)式;
(3)設(shè)拋物線l2的頂點為C,K為y軸上一點.若S△ABK=S△ABC,求點K的坐標(biāo);
(4)請在圖3上用尺規(guī)作圖的方式探究拋物線l2上是否存在點P,使△ABP為等腰三角形.若存在,請判斷點P共有幾個可能的位置(保留作圖痕跡);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(08)(解析版) 題型:解答題

(2007•威海)如圖,一條小船從港口A出發(fā),沿北偏東40°方向航行20海里后到達(dá)B處,然后又沿北偏西30°方向航行10海里后到達(dá)C處,問此時小船距港口A多少海里?(結(jié)果精確到1海里;參考數(shù)據(jù):以下數(shù)據(jù)可以選用:sin40°≈0.6428,cos40°≈0.7660,tan40°≈0.8391,≈1.732)

查看答案和解析>>

同步練習(xí)冊答案